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Executive Summary
The commanding General, Marine Corps Combat Development
Command (MCCDC), asked the Center for Naval Analyses
(CNA) to assess the general applicability of the new sciences to
land warfare. "New sciences" is a catch-all phrase that refers to
the tools and methodologies used in nonlinear dynamics and
complex systems theory to study physical dynamical systems
exhibiting a "complicated dynamics." 

A Concise Summary of the Overall Assessment

This report concludes that the concepts, ideas, theories, tools
and general methodologies of nonlinear dynamics and complex
systems theory show enormous, almost unlimited, potential for
not just providing better solutions for certain existing problems
of land combat, but for fundamentally altering our general
understanding of the basic processes of war, at all levels. Indeed, the
new sciences' greatest legacy may, in the end, prove to be not just
a set of creative answers to old questions but an entirely new set of
questions to be asked of what really happens on the battlefield.

This most far-reaching assessment necessarily represents a
long-term view of the coupling between the new sciences and
military theory. It assumes that a reasonably long-term
commitment will be made to ensure that at least some of the
many possible evolutionary routes borne of this coupling can be
adequately explored. New ideas, particularly those that question
the very foundation of a discipline, require time to mature.
Therefore, one should not necessarily expect to see a
"killer-application" that completely revolutionizes the way we
fight wars any time soon. 

At the same time, however, and from a shorter-term perspective,
this report concludes that many of today's "conventional"
problems and issues of warfare -- such as the dissemination and
fusion of real-time battlefield data; tactics and/or strategy
development; and more intelligent use of models and
simulations -- can benefit, to  varying degrees,  from the basic
insights into the behavior of complex systems obtained by the
new sciences.

  

Land Warfare and Complexity, Part II: An Assessment of the Applicability of Nonlinear Dynamics and Complex Systems
Theory to the Study of Land Warfare, Andy Ilachinski, Center for Naval Analyses CRM 96-68, July 1996

2



A Concise Summary of the Overall Assessment

The central thesis of this paper is that land combat is a complex
adaptive system. That is to say, that land combat is essentially a
nonlinear dynamical system composed of many interacting
semi-autonomous and hierarchically organized agents
continuously adapting to a changing environment.

Table 1. Land combat as a complex adaptive system

Generic Property of
Complex Systems

Description of Relevance to 
Land Combat

                                             
Nonlinear interaction

Combat forces composed of a large number of
nonlinearly interacting parts; sources include
feedback loops in C2 hierarchy, interpretation
of (and adaptation to), enemy actions, decision
making process and elements of chance

                                              
           Nonreductionist

The overall "fighting ability" of a combat force
is not a simple aggregate function of the
fighting ability of individual combatants

Hierarchical structure Combat forces organized in a command and
control hierarchy

Decentralized control There is no master "oracle" dictating the
actions of each and every combatant

Self-organization Local action, which often appears "chaotic"
induces long-range order

Nonequilibrium order Military conflicts, by their nature, proceed far
from equilibrium

Adaptation In order to survive, combat forces must
continually adapt to a changing environment

                               
Collectivist dynamics

There is a continual feedback between the
behavior of (low-level) combatants and the
(high-level) command structure

Military conflicts, particularly land combat, have almost all of the
key features of complex adaptive systems (see table 1): combat
forces are composed of large numbers of nonlinearly interacting
parts and are organized in a command and control hierarchy;
local action, which often appears disordered, induces long-range
order (i.e. combat is self-organized); military conflicts, by their
nature, proceed far from equilibrium; military forces, in order to
survive, must continually adapt to a changing combat
environment; there is no master "voice" that dictates the actions
of each and every combatant (i.e. battlefield action effectively
proceeds according to a decentralized control); and so on. This
means, in principle, that land combat ought to be amenable to
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precisely the same methodological course of study as any other
complex adaptive system, such as the stock-market, a natural
ecology or the human brain. 

Implicit in this central thesis is the idea that these largely
conceptual links between properties of land warfare and
properties of complex systems in general can be extended to
forge a set of practical connections as well. That is to say, land
warfare does not just look like a complex system on paper, but can
be well characterized in practice using the same basic principles
that are used for discovering and identifying behaviors in
complex systems.

Eight Tiers of Applicability

The following eight tiers of applicability provide a convenient
scaffolding on which to organize the potential applications of
complex systems theory to warfare. Indeed, just the fact alone
that there are so many different levels to which the "new
sciences" can be applied testifies to their enormous potential.
Note that Tiers I through VIII range roughly from applications
involving the least risk and least potential payoff (at least, as far
as a practical applicability is concerned) on Tier-I, to applications
involving the greatest risk, but also the greatest potential payoff,
on Tier-VIII (see figure 5):

Tier-I: General metaphors for complexity in war

The first tier of applicability consists of constructing and
elaborating upon similar sounding words and images that most
strongly suggest a "philosophical resonance" between behaviors
of complex systems and certain aspects of what happens on a
battlefield. It is on this tier that the well-known Clauswitzian
images of "fog of war," "center-of-gravity" and "friction" are
supplanted by such metaphors as "nonlinear," "co-evolutionary"
and "emergent." This first tier is accompanied by words of both
encouragement and caution:

On the one hand, the act of developing metaphors is
arguably an integral part of what complex systems theory
itself is all about, and therefore ought to be encouraged

On the other hand, an unbridled, impassioned use of
metaphor alone, without taking the time to work out the
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details of whatever deeper insights the metaphor might be
pointing to (i.e. without exploring what the other tiers of
applicability might have to offer), runs the risk of both
shallowness and loss of objectivity.

Tier-II: Policy and General Guidelines for Strategy

The second tier of applications takes a step beyond the basic
metaphor level of Tier I by using the metaphors and basic lessons
learned from complex systems theory to guide and shape how we
formulate strategy and general policy. Tier-II thus extends the
first tier of application to the military organization as a whole. It
consists of using both the imagery of metaphors and the tools
and lessons learned from complex systems theory to enhance
and/or alter organizational and command and control
structures. Potentially useful policy implications of ideas
borrowed from the lessons of complexity theory include

Look for Global Patterns. Search for global patterns in time
and/or space scales higher than those on which the
dynamics is defined. Systems can appear to be locally
disordered but still harbor a global order.

Exploit Decentralized Control. Encourage decentralized
control, even if each "patch" attempts to optimize for its
own selfish benefit, but maintain interaction among all
patches.

Find Ways to Adapt Better. The most successful complex
systems do not just continually adapt, they struggle to find
ways to continue to adapt better. Move towards a direction
that gives you more options.

Tier-III: Conventional warfare models and approaches

Tier-III consists of applying the tools and methods of nonlinear
dynamics to more or less "conventional models" of combat. The
idea on this tier is not so much to develop entirely new
formulations of combat so much as to extend and generalize
existing forms using a new mathematical arsenal of tools.
Examples of applications include
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Using nonlinear dynamics to explore implications of
nonlinearities in generalized forms of the Lanchester
equations

Exploiting an analogy between the form of the Lanchester
equations and Lottka-Voltera equations describing
predator-prey interactions in natural ecologies to develop
new models of combat

Using genetic algorithms to perform sensitivity analyses and
otherwise "test" the veracity of existing complex simulation
models 

Tier-IV: Description of the complexity of combat

This tier consists of using the tools and methodologies of
complex systems theory to describe and help look for patterns of
real-world combat. The fundamental problem is to find ways to
identify, describe and exploit the latent patterns in behavior that
appears, on the surface, to be irregular and driven by chance.
Examples of applications include

Looking for evidence of chaos in historical combat data

Using various qualitative and quantitative measures from
nonlinear dynamics and complex systems theory  to
describe the complexity of combat

Use phase-space reconstruction techniques from nonlinear
dynamics to reconstruct attractors from real-world combat
data and make short-term predictions based on underlying
patterns

Tier-V: Combat technology enhancement

Tier V consists of applying complex systems theory tools to
enhance existing combat technologies. The objective of this
middle tier of applications is to find ways to improve, or provide
better methods for applying, specific key technologies. Examples
of applications include

Using fractals for data compression
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Using cellular automata and chaotic dynamical systems for
cryptography

Using genetic algorithms for intelligent manufacturing

Using synchronized chaotic circuits to develop cheap IFF

Tier-VI: Combat aids for the battlefield

Tier-VI consists of using the tools of nonlinear dynamics and
complex systems theory to enhance real-world operations.
Examples of applications include

Using genetic algorithms to "evolve" operational tactics and
targeting strategies

Developing tactical picture agents to adaptively identify,
filter and integrate relevant information in real-time

Developing autonomous robotic devices to act as sentries
and to help in material transportation and hazardous
material handling

Tier-VII: Synthetic combat environments

Tier-VII consists of developing full system models for training
purposes and/or for use as research laboratories from which
general (and possibly universal) patterns of behavior can be
obtained. Examples of applications, ranging from least to most
sophisticated, include

Using cellular automata to explore basic behavioral
properties of simple local rule-based combat models

Using multi-agent based simulations of combat to explore
behavioral properties of combat models of mid-level
complexity

Using the Santa Fe Institute's general purpose modeling
system called SWARM to develop a full system-level model
of land warfare
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Tier-VIII: Original conceptualizations of combat

Tier VIII represents the potentially most exciting -- and certainly
most far-reaching -- tier of the eight tiers of application. It
consists of using complex systems theory inspired ideas and basic
research to develop fundamentally new conceptualizations of combat.
Examples of applications include

Using genetic algorithms to "evolve" possible low-level rules
that describe high-level observed combat behavior

Using neural nets to "induct" otherwise unseen behavioral
"patterns" on a battlefield

Developing ways of exploiting the nature of chaos in
combat phase-space to selectively "drive" combat to move
towards more favorable regions

Exploiting the collective intelligence of very many
otherwise "simple" autonomous micro-bots to conduct
"Fire-Ant Warfare"

Most Promising Applications

In a roughly ascending order of the probable length of time that
an application is likely to require before maturing to a point at
which a definitive assessment of its payoff can be made, here are
seven of the most promising applications of the "new sciences" to
land warfare that can be made in the short-term:

1. Exploit the general analogy between the form of the
Lanchester equations and Lotka-Voltera equations
describing predator-prey interactions in natural ecologies
to develop a generalized "Neo-Lanchesterian" approach to
land combat.

2. Use phase-space reconstruction techniques from
nonlinear dynamics to reconstruct attractors from
real-world combat data and make short-term predictions
based on underlying patterns. Part of this involves
developing an appropriate phase-space description of
combat.
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3. Develop simple local-rule-based models of combat to
explore general behavioral patterns and possible
universalities in combat. 

4. Use genetic algorithms to "evolve" tactics and strategies.
Specific applications might include tank tactics, targeting
strategies and using genetic algorithms as backbones of
real-time adaptive battlefield decision aids.

5. Develop multi-agent-based simulations of land warfare to
be used as training tools along the lines of commercial
games such as SimCity and SimLife. Explore the possibility
of using the Santa Fe Institute's SWARM modeling system.

6. Develop agent-based tactical picture agents to adaptively
retrieve, filter, and integrate battlefield and intelligence
data.

7. Reexamine existing policy and policy procedures, at the
highest levels, in light of the basic lessons learned from
complex systems theory. 

It is understood that there are many more theoretical avenues to
explore in the long-term as well. These include developing
measures of "complexity" of combat, developing general
data-collection methods that emphasize "process" vice more
traditional force-on-force attrition "statistics," looking for and
exploiting characteristic fractal-like behaviors in combat, using
various sophisticated pattern recognition techniques to look for
any high-level exploitable patterns on the battlefield and/or
information databases that describe the progress of a campaign,
and finding ways of exploiting the ability to both "control" and
"tame" chaos on the battlefield. These, and other possibilities,
are all discussed in the main text of this paper.

As a final note, it must be emphasized that land combat
represents but one level of activity within a complex nested
hierarchy of levels existing on many scales, not the least of which
is political. To make full use of what complex systems theory has
to say about the general nature of warfare, its lessons must be
applied not just to land combat alone, but to the entire chain of
combat and command structures.
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General Guidelines

The most important overall suggestion that can be made
regarding the applicability of complex systems theory to land
warfare is to be patient! As discussed at length in Part I of this
report, and stressed repeatedly throughout both volumes,
complex systems theory is a very young, very immature science,
which -- at this time -- is not even sure of its own future direction,
much less of its applicability to other, specific areas.

General guidelines for applying some of the basic lessons learned
from nonlinear dynamics and complex system theory include:

Develop "Nonlinear Intuition." It is vital for every decision
maker to go beyond the conventional "linear" intuition and
develop an intuition for the kinds of nonlinear behaviors
pervasive in complex systems. If the ideas of nonlinear
dynamics and complex systems theory are to take root in
the military, it is important for its leaders to learn some of
the technical aspects of these approaches.

Look for Inherent Nonlinearities in Conventional Models.
A fundamental lesson of nonlinear dynamics theory is that
one can almost always expect to find some manifestation of
chaos whenever nonlinearities are present in the
underlying dynamics of a model. This fundamental lesson
has potentially significant implications for even the simplest
combat models. Though some work has recently been done
to determine the implications of having nonlinearities
embedded within conventional models, many important
insights into how our current models of land combat really
behave remain to be discovered.

Emphasize Strong Interdisciplinarity. If there is one
universally agreed upon "insight" that has emerged out of
Santa Fe Institute's first 12 years of existence it is that
progress in complex systems theory demands an
interdisciplinary approach. Complex adaptive systems are
best studied by other complex adaptive systems.  

Redefine Traditional Measures of Effectiveness and Data
Collection Requirements. If land combat is a bona fide
candidate system for study as a complex system it must,
initially, be treated essentially as "just another system" for
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study by complex systems theory. This means that such
basic questions as "What are appropriate MOEs?" and "What
kinds of data are required for understanding the processes ofd
combat?" must be re-examined from the point of view of
complex systems theory. 

Do not Shy Away from using "Simple" Models. The first
task of any fundamental research effort -- and this is what
finding ways of applying complex systems theory to land
combat must necessarily be viewed as at this juncture --  is to
find a simple enough system that, while it is not an exact
replica of the system that one is trying to understand and
may lack many of its real-world complications, is able to
capture some of the essential properties of the real system. 

Attack Problem from Diverse Fronts. Complex system
theory, in practice, consists of looking for all possible ways
to gain a better understand of how a complex system
behaves. This means attacking the problem from diverse
fronts: develop models of land combat, compare behaviors
of combat models with behaviors of models of other
systems, and develop new tools to record relevant data (and
to re-examine historical data) from a complex systems
theory perspective.   
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General Discussion

Preliminary Remarks

In the opening section of Land Warfare and Complexity, Part I [28],
a not entirely facetious question was raised asking whether the
behavior of the human brain, with its enormously complicated
set of about ten billion nonlinearly interacting neurons, has
anything in common with what happens on the battlefield? On
paper, the human brain and the battlefield appear to have much
in common. For example, both consist of a large number of
nonlinearly interacting parts whose individual behaviors depend
on the action and pattern of behavior of other (nearby and
not-so-nearby) parts. Both obey a decentralized control. Both
appear to be locally "chaotic" but harbor intricate, long-range
order. Both tend not to dwell for long times near equilibrium,
preferring instead to exist almost exclusively in a nonequilibrium
state far from equilibrium. Both continually adapt to internal and
external pressures and to the environment. And so on. But the
fact there are obvious core similarities in the makeup and
dynamics of these two a-priori very different systems is not really
the most interesting question one can ask. The really interesting
question is "What universal patterns of behavior do these two a-priori
dissimilar systems produce by virtue of their core similarities?" And are
there any universal patterns of behavior common to all complex
adaptive systems that share certain "signature" characteristics;
and if so, what are those characteristics?

Scott Kelso, who is the director of the Center for Complex Systems at
Florida Atlantic University, has recently published an ambitious
and intellectually far-reaching monograph exploring the thesis
that the human brain is fundamentally a pattern-forming,
self-organized dynamical system obeying a set of nonlinear
dynamical laws [32]. In this monograph, he writes,

"Rather than compute, our brain 'dwells' (at least for short times) in
metastable states: it is poised on the brink of instability where it can switch
flexibly and quickly. By living near criticality, the brain is able to anticipate
the future, not simple react to the present. All this involves the new physics of
self-organization in which ...  no single level is any more or less important
than any other." 

It is tempting to speculate that almost exactly the same words can
be ascribed to what happens on a battlefield. 
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Another parallel can be drawn between Kelso's book and Parts I
and II of this assessment. Just as Kelso's book is unarguably an
anomaly from the standpoint of the conventional practices of
cognitive- and neuro-sciences -- sciences that have heretofore
used tools and methodologies rather far-removed from the realm
of nonlinear dynamics and complex systems theory -- so, too, is a
discussion of applying the "new sciences" to the study of land
warfare an anomaly if interpreted in the context of conventional
military theory, operations research, and modeling practices.
(Not surprisingly, Kelso's book -- and the overall approach it
advocates -- has thus far garnered only a lukewarm reception
from the practitioners of the prevailing wisdom.) The lesson here
is that conventional wisdom is usually a difficult and stubborn
beast to nudge. The assertion that land combat is a complex adaptive
system, along with the general methodology that this paper
proposes be used to explore the implications of this assertion, is
as radical a suggestion to make in operations research circles as
Kelso's thesis is in the circle of cognitive- and neuro-scientists.
The skeptical reader is therefore urged to give this novel and
admittedly far-from-mainstream idea an honest chance.

The Charter

The titles of Part I [28] and Part II of this paper should serve as
strong indicators of the fact that the charter for this project was
very broad. This project was designed to assess the applicability of
nonlinear dynamics and complex systems theory to the study of land
warfare. The form of the overall assessment, and the level on
which the overall assessment of applicability was to be made, was
deliberately left open. There are two main reasons for this. One
reason, of course, is the relative immaturity of the so-called "new
sciences," in which both nonlinear dynamics and complex
systems theory are major players. The second reason is that, as
alluded to in the opening remarks to this section, this is the first
serious attempt that any branch of the military has made to
incorporate into its world-view such a broad spectrum of
knowledge that heretofore has been largely dismissed as being
either only of vague, peripheral interest or as being utterly
irrelevant altogether. In light of these two reasons, expectations
and constraints were both kept to a minimum. 
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The Problem

Nonlinear dynamics and complex systems theory have been
around as bona-fide research disciplines for roughly 30 years and
12 years, respectively. Both are still maturing fields. Particularly
complex systems theory, which cannot at this time be considered
anything but an "infant science." Together, nonlinear dynamics
and complex systems theory form a growing pool of knowledge
and conjectures about (1) what tools are best for describing the
characteristics of real-world complex systems and for describing
real-world systems that exhibit an apparently "complicated"
dynamics, and (2) what general behavioral properties many
real-world complex systems all seem to share. Thus, the basic
question that was asked at the beginning of this project was:

"Given what we thus far know about how to study real-world
 complex systems and how those systems generally behave, what 
 do nonlinear dynamics and complex systems theory add to our
 conventional understanding of land warfare?" 

On one level, the most honest and simplest answer one can give
to this question is that "We'll know as soon as we start looking at
land warfare in earnest." For reasons already discussed, complex
systems theory is not yet a mature enough "science" that it is able
to say much of anything about a system other than identifying it
as a viable candidate for study. The fact that one application of
complex systems theory to land warfare might involve, say, a
multi-agent simulation, by itself tells us little about land warfare
that we did not know already. Even what is meant by "multi-agent
simulation" is not all that clear, with different researchers
choosing to interpret their own favorite meanings. What
potentially new insights into land warfare a multi-agent
simulation might provide us with in the future requires us to first
develop and then study in detail the behavior of such a model.  It
is, in fact, absolutely vital that we take such a step, for in the end
there is no substitute for seeing what actually comes of
interacting with a complex systems theory model of land combat.
If recent history of complex systems theory-derived models of
natural systems gives any indication as to what kinds of insights to
expect from such models, the best guess is that the most
important insights will prove to be unexpected and emergent.
Recall Conway's simple two-dimensional cellular automaton rule
called Life (Part I, page 87). While the rule itself is very simple,
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and is easy to set up to run on a computer, it took years for
researchers to catalog its many patterns and to eventually prove
that it is capable of universal computation.

On a deeper level, the answer to the boxed question on the
previous page really embodies three separate but interrelated
issues (see figure 1): 

Figure 1. Schematic of the interrelated issues of addressing land
warfare as a complex system

Models/Simulations

Complex
 Systems
 Theory

   Land
Warfare

1. Complexity theory,  which refers to any and all conjectures,
hypotheses, theories, experiments, mathematical models,
etc. having to do with the understanding of complex
systems exhibiting a complicated (i.e. chaotic) behavior.
In particular, complexity theory is assumed to include
both nonlinear dynamics and complex systems theory, the
latter including a multitude of sub-disciplines such as
artificial life, cellular automata, genetic programming,
neural networks, etc. Part I [28] of this report contains a
detailed discussion of many of these topics. Topical
summaries are also provided both in the discussion below
and in the appendix.

2. Land warfare, which embodies all of the myriad problems
and issues of land warfare, including combat attrition,
command and control, coordination, intelligence, tactics
and strategy, training, etc. One must also respect that the
various levels of land warfare to which the tools and
methodologies of complexity theory can be applied,
including tactical, operational, strategic and general strategic
levels.1

1 The general strategic level refers to the level on which socio-political
strategies are followed over long periods of time and which can therefore
span over several conflicts and embody many different strategies.
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3. Modeling/Simulation, which is a generic label for the
overarching context within which possible
interconnections between the tools and methodologies of
complexity theory as well as the issues and problems of
land warfare can be fully explored. One must be cognizant
of the overall objective of any model or simulation before
it is developed. A model that is to be used only for training
purposes is fundamentally different from a model that is
to be used to assess the effects of weapons and/or
decision-making in a given environment.

The Approach

Before an honest effort could be made to discuss and weigh the
relative merits of the possible applications of the so-called "new
sciences," several preliminary information-gathering steps had to
first be taken: 

1. A careful and extensive review of all available technical
and popular literature

2. A review of information resources available on the
World-Wide-Web (WWW)

3. A review of the state-of-the-art technology and
methodology, as practiced by active researchers in the
fields of nonlinear dynamics and complex systems theory

4. Consultation with research staff members of the Santa Fe
Institute in Santa Fe, New Mexico

Part I of this report provides the theoretical framework and
mathematical background necessary to understand and
intelligently discuss many of the key ideas and concepts
underlying the study of nonlinear dynamics and complex systems
theory. It is also meant to be consulted as a general technical
sourcebook of information. Part I includes an extensive
bibliography and glossary of terms, and a sorted collection of
many nonlinear dynamics and complex systems theory related
Universal Resource Locator (URL) links on the WWW. In fact,
during the write-up of Part I, it was decided that an
HTML-formatted version of the glossary of terms and a somewhat
shortened version of the URL list of WWW resources could serve
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as a cornerstone of MCCDC's new "New Sciences" home page on
the WWW.2

Two Preliminary Questions

From the title of this paper, and from the basic charter of this
project, one can intuit that before any prolonged discussion of
potential applications ensues, two basic questions must first be
answered:

1. What are nonlinear dynamics and complex systems theory?

2. Why land warfare and not air warfare or naval warfare?

Question 1: What are Nonlinear Dynamics and Complex
Systems Theory?

In simplest possible terms, "nonlinear dynamics" refers to the
study of dynamical systems that evolve in time according to a
nonlinear rule. This means that, for example, the effect of
adding two inputs first and then operating on their sum is, in
general, not equivalent to operating on two inputs separately and
then adding the outputs together. Or, more colloquially, the
whole is not necessarily equal to the sum of the parts. Complex
systems theory, on the other hand, refers to the study of
dynamical systems that are composed of many nonlinearly
interacting parts.

Nonlinear dynamics and complex systems theory both fall under
the broad rubric of complexity theory that embodies a remarkably
wide variety of disciplines ranging from biology, chemistry, and
physics to anthropology to sociology to economics. Among the
many subfields of complexity are deterministic chaos, stochastic
dynamics, artificial life, ecological and natural evolutionary
dynamics, evolutionary and genetic programming, cellular
automata, percolation theory, cellular games, agent-based
modeling, and neural networks, among many others (see table
2). Many of these have been either discussed in length or
touched upon briefly in Part I of this report [28]. 

2 MCCDC's "New Sciences" homepage can be found at this address:
http://138.156.204.100/www/MCRC/library/beyond.htm
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Complexity theory as applied to land combat is best thought of as
a process whereby one searches for the simplest possible
description of combat that gives rise to the greatest variety of
real-world behaviors. The supposition is that there are universal
behaviors that do not depend critically on the details of force
structure and dynamics.

Table 2. A small sampling of research areas, concepts and tools falling
under the broad rubric of "complexity"
Research Areas Concepts Tools

agent-based simulations adaptation agent-based simulations
artificial life autonomous agents backpropagation

catastrophe theory autopoiesis cellular automata
cellular automata complexity cellular games

cellular games computational irreducibility chaotic control
chaos computational  universality entropy

chaotic control theory criticality evolutionary programming
complex adaptive systems dissipative structures fuzzy logic

coupled-map lattices edge-of-chaos genetic algorithms
discrete dynamical systems emergence inductive learning
evolutionary programming fractals information theory

genetic algorithms intermittency Kolmogorov entropy
lattice-gas models phase space lattice-gas models
neural networks phase transitions Lyapunov exponents

nonlinear dynamical systems prisoner's dilemma maximum entropy
percolation theory punctuated equilibrium neural networks

petri nets self-organization Poincare maps
relativistic information theory self-organized criticality power spectrum

self-organized criticality strange attractors symbolic dynamics
time-series analysis  synergetics time-series analysis

etc. etc. etc.

Despite the fact that there is considerable overlap both between
nonlinear dynamics and complex systems theory, and among the
individual research areas, concepts and tools that constitute these
two overlapping disciplines, there are two deep themes that run
through, and summarize the essence of, all complexity research:

Surface complexity can emerge out of a deep simplicity,
embodying the idea that what may at first appear to be a
complex behavior, or set of behaviors, can in fact stem from
a simple underlying dynamics

Surface simplicity can emerge out of a deep complexity,
embodying the idea that enormously complicated systems
that a-priori have very many degrees-of-freedom and
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therefore are expected to display "complicated" behavior,
can, either of their own accord via self-organization, or
through selective "tuning" by a set of external control
parameters, behave as though they were really
low-dimensional systems exhibiting very "simple" behavior

Most "complexity research" consists of attacking specific
problems from both of these points of view simultaneously. This
is also the method of attack we will use throughout this paper in
applying complex systems theory to the problem of land warfare.

Question 2: Why Land Warfare and not Air Warfare or
Naval Warfare?

Of the many different kinds of modern warfare that could be
chosen as a testbed for applying the ideas and tools of complex
systems theory, land warfare -- as a whole -- is best suited for three
reasons [Hughes, Military Modeling]: 

1. Lots of Individual Components. Land warfare involves
potentially vast numbers of mutually interacting
combatants (where "combatant" refers to any irreducible
element of combat; i.e. it can refer to an infantryman, a
tank or transport vehicle, depending on circumstance), so
that it can naturally be described as a "complex system."
While a natural unit of measure for the size of a naval
force, for example, is the number of ships, the natural
unit for land warfare is the number of individual soldiers.

2. Complex Environment. Land warfare generally takes place
within a much more complex environment than do other
forms of combat. Air combat, for example, takes place
within an almost homogeneous medium and
"interactions" arise mainly from line-of-site. Likewise,
while the ocean is arguably a complicated medium, from
the point of view of vulnerability to enemy fire, it
represents a relatively simple environment. On the other
hand, the surface of the earth is strewn with complexities,
from its effects on various sensors and communications
systems to its profound implications for the composition
of combat forces and tactics.
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3. Involves Individual Psychology. Land warfare depends on
psychological factors to a far greater extent than do other
forms of combat. 

Now, these three reasons ought not be misunderstood to imply
that aspects of other kinds of warfare are not amenable to study
from a "new sciences" perspective. Such a view is, in fact, patently
false. For example, questions regarding how to best understand
the operation of command and control structures and
vulnerabilities of enemy Integrated Air and Defense Systems
(IADS), are inherently imbued with various complexity-ladden
problems that are best tackled by applying the tools and
methodologies of complex systems theory. Likewise, the
integration of many simultaneous real-time streams of
information is an integral part of putting together a reliable and
meaningfully evolving tactical picture. This is a fundamental
problem that is amenable to some of the ideas borne of complex
systems theory and its "solution" is applicable, in principle, to all
forms of combat.

What Have We Learned From Complexity Theory?

Just as "chaos theory" is a misnomer because the theory really
deals with the regularities and patterns embedded within what
only appears to be disordered and chaotic, so "complexity
theory" is a misnomer because it really deals with the underlying
simplicity of what are ostensibly enormously complicated systems.
In fact, complexity theory attacks the problem of describing the
behavior of complex systems from two complementary points of
view (see figure 2):

Surface complexity arising out of a deep simplicity, in which it
attempts to describe the apparently complex high-level
behavior of a complex system (such as the language
capability of the human brain) in terms of a much
simplified set of low-level rules (such as the neural-net-like
threshold activation functions of individual neurons of a
human brain). Think of the two-dimensional
cellular-automaton Life-game (see Part I, page 87) in which
complex high-level patterns of gliders and other
self-reproducing structures owe their existence to a rather
simple set of underlying rules.
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Surface simplicity arising out of a deep complexity (Kelso, [32]),
in which it tries to elucidate the general principles of how
complex systems can be made to behave as though they
really lived in a much simpler (or lower-dimensional) space.
Think of the Rayleigh-Benard experiment [23] in which a
layer of liquid (composed of a vast number of interacting
molecules) is heated from below and cooled from the top
to set up a temperature gradient. If this temperature
gradient is small, heat is randomly dissipated among the
many molecules and there is no large-scale patterned
motion of the liquid. As the gradient increases, however,
the liquid begins moving as a coordinated whole in an
ordered, coherent, rolling fashion. Its overall behavior can
now be expressed by a single collective variable describing
the roll-amplitude. In other words, the behavior of a
complex system that a-priori has on the order of 1020

degrees-of-freedom (since there are about 1020 molecules,
each of which contributes to the overall motion), can be
described by a one-dimensional equation of motion!

Figure 2. Two complementary lessons of complex systems theory
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What We Know

Despite the infancy, as a science, of complex systems theory, and
the relative dearth of universally applicable results, there is
nonetheless much that has been learned about the general
behavior of complex adaptive systems in recent years. 

We know, for example, that in order for complex systems to be
"adaptive" it is necessary that they are nonlinear and capable of
both storing and exchanging information among their parts. The
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information exchange must also be meaningful; that is, it must
be neither too sparse nor too dense (recall the edge-of-chaos
metaphor, discussed in Part I, page 76). 

We also know, or at least have a very strong suspicion, that
self-organization is a general property of complex adaptive systems.
This means that complex adaptive systems are such that, as they
evolve, they naturally go from being initially chaotic, featureless,
and possessing disorganized, independent, states to having
organized, structured and highly inter-dependent states. This
progression from order to disorder may be smooth or proceed
with many fits and starts. It may even reverse direction at times, as
it does in natural evolution. But the overall tendency in any
complex adaptive system is to evolve towards self-organization.

There are roughly seven basic concepts of and conditions for
self-organization in complex systems ([32]):

1. The spontaneous appearance of patterns results from
large numbers of nonlinearly interacting components. If the
system does not possess a sufficient number of
components, or if its components do not interact, patterns
will not emerge.

2. The system must be dissipative (that is, there must be
mechanisms for converting one form of energy into
another, and of locally pumping energy out of the system)
and far from equilibrium. Because of the nonlinear
interactions, heat or energy does not diffuse uniformly
throughout the system. Rather, energy is concentrated
into structural flows that transport the heat (dissipate it)
more efficiently. As a result of this dissipation, many of the
systems degree-of-freedom are effectively suppressed and
the system behaves as though it lives in a much lower
dimensional space.

3. Control parameters lead the system through different
patterns but are typically not dependent on the patterns
themselves. In the Rayleigh-Benard experiment (see
above), the control parameter is the temperature gradient
that is set up between the top and bottom layers of the
liquid.

4. Collective variables (or order parameters) describe the relevant
degrees-of-freedom of the system. These collective
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variables are created by the coordination among the
system's parts. In the Rayleigh-Benard experiment (see
above), the collective variable is the amplitude of the
convection rolls of the liquid.

5. Order parameters are usually found near nonequilibrium
phase transitions, where a loss of stability entails new
and/or different patterns and/or switching between
patterns.

6. Fluctuations -- which are an inherent source of internal
noise -- continuously probe the system, allowing it to
adjust its behavior and search for new patterns.

7. The order parameter dynamics, or equations of motion
describing the coordinated dynamical motion of the
system, can have simple (i.e. fixed point or limit cycle) or
complicated solutions, including deterministic chaos.

What We Don't Know

There is much about the behavior of complex adaptive systems
that we do not know. We do not even know the answers to some
of the most basic questions one could pose about complex
systems, such as  "What is complexity?" or "What is organization?"
We do not know, for example, why some systems are able to
adapt well to certain environments and/or environmental
changes and others are not; i.e. we do not really know what
makes a system adaptive. We do not know whether there is a  
minimum level of complexity a system must possess in order to
be adaptive. or how to define a universally relevant measure of
complexity. We do not know in advance whether a system will be
weakly or strongly adaptive. We do not know exactly what
properties of systems are characteristic  of universal behaviors,
nor what that class of universal behaviors is (self-organized criticality
-- see Part I [28], page 101 -- notwithstanding).

How is Work in the "New Sciences" Actually Done?

We briefly discuss how the "new sciences" are really done in the
complex systems theory research community to give a feel for
what a complex systems theoretic approach to studying land
combat is likely to look like.
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There is a growing popular misconception that complex systems
theory is a well-defined science. Somewhat facetiously, it could be
said that a prevailing belief is that complex systems theory
consists of some canned set of software routines that can be
downloaded from, say, Microsoft's WWW site, and directly
unleashed on whatever "complex problem" happens to strike
one's fancy. This cannot be further from the truth. The reality is
that much of what goes under the name of "complex systems
theory" actually consists of a hodgepodge of on-the-fly
hand-crafted and tinkered techniques and approaches that say
more about the research style of a particular complex systems
"theorist" than they do about the how the new sciences are
practiced as a whole.  There is certainly no existing complex
systems theory model per se that can be ported over to describe
land combat. The current crop of models are either specifically
tailored to particular problems -- such as John Holland's ECHO is
for ecological studies or Menczer's and Belew's Latent Energy
Environment (LEE) is for investigating the general question of
how the behavior of organisms is interconnected with their
environment -- or  are general purpose simulators (like the Santa
Fe Institute's SWARM) that must be carefully tuned to apply to
specific systems. 

Most "new sciences" research is practiced by following these five
basic steps (these steps are not meant to be taken
tongue-in-cheek!):

1. Think of an interesting question to ask regarding the
behavior of a real system (or find a real system to study)

2. "Play" (i.e. interact) with simplified models of the system 

3. Sit back and watch for patterns

4. Develop theories about how the real system behaves

5. Repeat steps 2-4!

The most important step is the italicized step 3. Much of the
early work with trying to understand the behavior of a system
consists of finding ways to spot overall trends and patterns in the
behavior of a system while continually interacting and "playing"
with "toy-models" of the system. If one is serious about applying
the "new sciences" to land warfare, one must be ready to rethink
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some of the conventional strategies and approaches to modeling
systems. Complex systems theory is not necessarily best done by
studying the output of a several-thousand-line long computer
program.

Another important element of the basic approach of complex
system theory to understanding the behavior of complex systems
is that the "forward-problem" and "inverse-problem" must both
be studied simultaneously (see figure 3), and that the interplay
between experience and theory is never overlooked.

Figure 3. Interplay between experience and theory in the forward-
and inverse-problems of complex systems theory
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The "forward problem" consists essentially of observing either
real-world behavior or the behaviors of a model of a complex
system with the objective being to identify any emergent
high-level behavioral patterns that the system might possess. The
"inverse problem" deals with trying to induct a set of low-level
rules that describe observed high-level behaviors. Starting with
observed data, the goal here is to find something interesting to
say about the properties of the source of the data. The forward
problem is therefore concerned with theoretical tools that are
used to identify patterns, while the inverse problem is concerned
with tools that are used to induct low-level rules (or models) that
generate the observed high-level behaviors. 

Land Warfare and Complexity, Part II: An Assessment of the Applicability of Nonlinear Dynamics and Complex Systems
Theory to the Study of Land Warfare, Andy Ilachinski, Center for Naval Analyses CRM 96-68, July 1996

25



What are the Basic Questions to ask of a Complex System?

Just as the first steps to take in understanding a system is to
playfully interact with toy-model representations of it (see above),
so the first few questions that a complex systems theorist typically
asks of a new system under study are relatively simple (simple to
ask, not necessarily to answer) and to the point: 

1. What is the number and nature of the elementary
constituents of the system? 

2. What is the relative contribution each constituent makes
to the overall integrity of the system (i.e. what is its
"context" and a measure of its "fitness")?

3. What kind of internal and external sensory apparatus do
the constituents have?

4. Do the constituents have a "memory"? How reliable is it,
and how far back in time do they retain memories?

5. What is the nature of the interactions among the
constituents?

6. How do the constituents communicate (i.e. how do they
pass and process information)?

7. What can the constituents do? That is, what is their "action
space"?

8. How are the constituents able to adapt to (both internal
and external) changes in their environment ?

9. If the system is externally controlled, what are the external
control parameters?

10. If the system seems to exhibit a globally ordered (or
coherent) pattern of behavior, what are the appropriate
collective variables that describe that behavior?

These questions, and others like them, are likely to be among the
first basic questions asked by any serious student of complex
systems theory encountering "land combat as a complex system"
for the first time.
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Patterns on a Battlefield

"Themistocles said that a man's discourse was like to a rich Persian carpet, the
beautiful figures and patterns of which can be shown only by spreading and
extending it out; when it is contracted and folded up, they are obscured and

lost."  -- Plutarch (46 -120 A. D.)

At the most abstract conceptual level, the irrefutably complex
processes of land combat still form an inherent pattern.  And a
pattern is something that, once understood or unfolded, can be
exploited. 

Implicit in any application of the "new sciences" to land combat --
whether that application uses attractor reconstruction techniques
to make short-term predictions, genetic algorithms to evolve
operational tactics, or multi-agent based simulations -- is the idea
that there is some latent order underlying what appears on the
surface to be irregular and chaotic. Indeed, science itself
arguably takes its greatest steps forward whenever someone
discovers a new pattern, or underlying unity, in the world where
none was observed before. 

Patterns are best discovered when we take a step back from
something to focus on the thematic relationships among, and
overall context for, the parts. The ability to perceive patterns in an
otherwise patternless process is what we call intuition. For
example, what lies behind the success of every successful
wall-street broker is the broker's intuitive recognition of patterns
underlying the succession of Dow-Jones Industrial stock prices
(along with a recognition of patterns of correlations with other
pertinent variables such as acquisitions and mergers). Likewise,
what lies behind the success of every great field commander
possessed of the mythic "battlefield intuition," is an intuitive
recognition of patterns underlying the unfolding processes of
combat on a battlefield. 

A receiver in football, running into a strong head-wind with
outstretched arms to catch a throw coming over his right
shoulder forty yards from where the quarterback released the
ball, does not need to know the exact starting coordinates and
velocity of the ball and integrate Newton's equations in his head.
He simply "knows" when to catch the ball! He can intuit -- and
exploit -- a simple pattern, without working out the details of how
that pattern came to be. Moreover, this intuition is borne of
direct experiential data. The outfielder's brain slowly, over the
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course of many years of playing football, builds an internal
"model" of the flight path of a football in varying situations and
contexts. 

Now, consider what happens to an inflated balloon as its untied
end is released.3 It ricochets around the room in a frenzied
chaos. Its path is extremely sensitive to initial conditions, and is
thus prototypically chaotic. The equations governing its motion
are nonlinear, so that unless the initial conditions are known
exactly, they cannot be used in practice to predict the balloon's
path very far into the future. How would a football receiver do in
trying to catch it? Assuming the football player possesses an
above-average degree of eye-hand coordination, it is likely that
his brain would gradually -- over many trials -- induct a model of
the balloon's meanderings. While his model will be far from
perfect, of course, the football player will likely, over time, be
able to catch the balloon say, 5 or 10 percent more frequently
than what we would guess from chance alone. He will have
intuitively learned to exploit the a-priori chaotic system's
behavior well enough to consistently beat mere odds. 

Having such an "learned" intuition of latent patterns would
clearly pay great dividends on the stock market and is the reason
why wall-street is now hiring so many physics and mathematics
Ph.D.'s straight out of graduate schools. Doyne Farmer, one of
the founding fathers, and most promising young stars, of
nonlinear dynamics recently quit active research in the field to
found the Prediction Company. The Prediction Company consists
mostly of young Ph.D.'s and graduate students and is designed
specifically for applying the ideas of nonlinear dynamics and
complex systems theory to identifying exploitable patterns on the
stock market. Though its algorithms are proprietary and the
details of how well Farmer's company is doing have not been
disclosed, Farmer has been quoted in recent interviews as
suggesting that the Prediction Company is doing quite well as far as
"keeping ahead of the game" is concerned. "Keeping ahead of
the game" in the stock market, of course, might mean doing only
a few percent better than average; but that is all it takes.

Combat as Soccer?

Now, what does this all have to do with warfare? This discussion
was meant to motivate the basic idea that if nonlinear dynamics
and complex systems theory do nothing else, they provide an
3 This nice example comes from reference [31], page 422.
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arsenal of powerful pattern recognition tools. As a visual metaphor,
consider the image of a soccer field shown in figure 4.

Soccer is not a bad metaphor to use for combat. Land combat is
arguably a much closer spiritual cousin to games such as soccer
and football than it is to chess. While chess is a rather slow, stoic,
progression of individual moves and countermoves, combat
consists of more fluid-like dynamical evolutions of a coherent
cacophony of players. 

Figure 4 is taken from a figure appearing in a recent New Scientist
article describing the work of sports scientist Keith Lyons and his
colleagues at the University of Wales Institute in Cardiff, England
[44]. Lyons is able to show that while, on one level, the
progression of moves in a soccer match may appear to be
random -- with the 22 players on both sides ostensibly free to run
and kick the ball anywhere they like on the field -- on another
level they harbor highly structured innate patterns. Though
figure 4 shows only the simplest such pattern -- namely, the
tendency of a Dutch goal keeper playing in the 1994 World Cup
to kick mainly to the left-hand-side of the playing field - it points
to much deeper insights.

Figure 4. Schematic representation of latent patterns on a soccer
field4

Lyons uses notational analysis -- which is a technique for
transferring information about a game from video onto
computer-generated grids -- to  study in detail the movement and
styles of play of individual players. He is particularly interested in
the way that individual playing style disrupts an opponent's
overall pattern of play. There is evidence to suggest that the most
successful teams are those that actively intervene to create and
exploit perturbations to the "flow" of a game The best teams are
the ones that "maximize their chances" and can "break the
game's structural constraints." [44] Moreover, Lyons has

4 This figure is reproduced from [44].
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observed that, over the course of an entire season, teams
undergo transitions among three basic phases: (1) a period of
initial equilibrium in which they settle down to a comfortable
style of play, (2) a period of intermittent chaos, during which
they adjust to a perturbation (such as being asked to incorporate
a new tactic or accommodate the playing style of a new player),
and (3) a period of new equilibrium, in which a team's playing
style settles into one that may or may not be as successful as that
during the first period. The objective is to identify the types of
perturbations -- and when to apply them -- in order to drive a team
through the second, chaotic, phase into a third phase that is
more successful than the first. 

All of this, of course, translates almost directly to the problems
and issues faced by a field commander. The overarching question
is "What are the underlying patterns governing the processes of
combat?" Answering this question from the point of view of
complex systems theory entails looking at combat from a rather
unconventional perspective. Rather than focusing on
force-on-force attrition statistics and other static measures of what
has happened, one must instead focus on patterns of attrition as
they evolve over time and other dynamic measures of what is in
the process of happening. While these ideas are necessarily vague at
this stage, they underscore an important element of the
attitudinal shift that accompanies any re-examination of an old
"problem" from a "new sciences" perspective.

Models and Simulations: An Heuristic Discussion

"Cosmic Nonsense: Is any model of the universe that claims to be final and
exhaustive." -- E. M. Robinson (1987)

It is safe to say that, in its current stage of development, complex
systems theory consists almost entirely of some form of
modeling, simulation or the design of simulation-engines, such
as the Santa Fe Institute's SWARM system, that run them. Quite
literally, much of leading-edge complex systems theory is
practiced by (1) choosing a real-world system to  "understand,"
(2) building a model of it, and (3) watching and interacting with
the model as it runs on a computer (while looking for patterns
that might provide some deeper insight into what the real-world
system itself really does). Inevitably, then, any serious discussion
of the applicability of complex systems theory to land warfare --
or, for that matter, the applicability of complex systems theory to
the study of any real complex system -- must include a discussion
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of what is meant by "model" and "simulation." It is not always
easy to make, or maintain, a proper distinction between these
two important concepts.

The simplest heuristic distinction that can be made between
"models" and "simulations" is that models are generally
represented in terms of equations, and simulations are generally
represented by computer programs [56]. Though not always true,
models try to induct an overall understanding of a system by
simplifying it (simplifications typically coming at the expense of
realism), whereas simulations try to include as much detail about
a system as possible to reproduce its overall behavior in a
specified situation (the realism often coming at the expense of
simplicity). A slightly more refined view to take of models and
simulations is to think of a simulation as a kind of "upper level,"
or more sophisticated, model.

What Makes a Model Useful?

In order to be useful, a model ought to have at least these three
fundamental ingredients:

1. A Model Must be Developed in a Well-Defined Context. A
model must start out with the basic question, "What is this
model needed for?" A model that is designed without having
an explicit, well-defined question or set of questions to be
answered is at best dangerous and at worst useless. The
answers to different questions require different models. Is
the "answer" to be qualitative or quantitative? Descriptive or
predictive? Broadly applicable or heavily context-dependent? Is
the purpose of the model to explicitly mimic reality?; is it
to create a synthetic environment to simulate the
experience of battle?; is it to teach decision making?; or, is
it simply to assess the relative merit of various options?
What kind of a model is developed, and how detailed it is,
depends strongly on how these, and other,
context-defining questions are answered. Modelers often
do not think enough about what purpose the model is
supposed to serve, and pay too much attention to building
more and more unnecessary detail into the model.

2. A Model must "Respectfully" Simplify the Real System. A
model ought to skeletonize (i.e. reduce) a system down to
its most important parts and drivers without
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compromising the overall integrity of the system. If the
model turns out to harbor effectively the same order of
complexity as the system it models, one may have
succeeded in "canning" the system for future study -- so
that the system can be studied even when the system
physically is not present -- but the task of simplifying and
understanding the behavior of the system remains
effectively untouched (see discussion of Tierra below).

3. A Model must Provide a "Shortcut" Solution.  If the
purpose of a model is to simulate the evolution of a
system, the model must be able to faithfully reproduce the
system's essential behavior in a time fast-enough to allow
whatever decisions must be made based on the model's
output to be made on time. If the purpose of the
simulation is to provide a real-time decision aid, for
example, the model must "predict" the outcome of
(possibly many) sets of possible starting conditions in less
time than it takes one set of real conditions to evolve.

Three Classes of Models

Roughgarden, et. al., have found it convenient to partition the
set of possible models into the following three basic (and slightly
overlapping) classes:

 Class 1: Minimal Idea Models

 Class 2: Minimal System Models

 Class 3: Synthetic System Models

Minimal Idea Models

A Minimal Idea Model (MIM) explores some idea or concept
without the inconvenience of specifying the details of the system,
the environment in which the system evolves, or much of
anything else. The assumption is that the phenomenon of
interest is a computational entity whose properties are essentially
the same across a wide range of possible universes. 

An example of a MIM is a simple cellular automaton model (see
Part I, page 81) of a complex system. Recall that, in its most
elementary form, a cellular automaton provides a way of
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exploring the implications of having a discrete space, discrete
time, and a discrete local dynamics, and no more. It can be used as
a basic template on top of which more realistic models can be
built, but is itself useful primarily for looking for possible
universal behaviors that appear in all complex systems obeying a
local-rule dynamics.

Because MIM's leave out many of the details of a real-world
system, their success ought to be measured less in terms of their
"predictive value" and more in terms of their ability to "make a
point," demonstrate the plausibility of a concept or simply
communicate an idea.5 

Most models of complex systems in the complex systems theory
community currently reside in this class. It is also likely that most
of the early impact of applying complex systems theory to land
warfare will come from this class of models. 

Minimum System Models

A Minimal System Model (MSM) is designed to explore the
dynamics of some greatly simplified subset of features of the real
system and/or environment. An MSM is essentially a MIM with
some attention given to modeling the real-world environment.
This class of models respects the details of the real system, but
judiciously strips away unnecessary information. Of course, it may
turn out in the end that the omitted information was crucial for
understanding how the real system behaves. What to include and
what to exclude is always the design choice of the modeler. But if
the omissions are carefully and wisely chosen, and the simplified
system retains the essential drivers of the real system, an MSM is a
useful vehicle from which to abstract basic patterns of behavior.

This is the class of models that is likely to constitute the
"bread-and-butter" class of complex systems theory derived
models of land combat; but only after a preliminary round of
seeing what MIMs have to offer to modeling land warfare has
been completed.

Synthetic System Models

A Synthetic System Model (SSM) is an expansion of an MSM in
which (ideally) all the assumptions about, and known properties
of, a natural system are treated formally. It is a synthesis of

5 See Chapter 24, page 433 in reference [7] for a further discussion of
this point.
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detailed descriptions of all the component parts and processes of
the system of interest. 

An example of an SSM is Santa Fe Institute's SWARM, with which
it is possible to develop a full system-level description of land
combat. The price to be paid for developing an SSM, however, is
that the behavior of the SSM can be just as difficult to
understand as the behavior of the real system. Which brings us to
the next very important question...

Computer Models

"Computer are useless. They can give you only answers." -- Pablo Picasso

The Lanchester equations of land combat were borne of a rich
tradition in the sciences to build abstract, simplified models of
natural systems. Such models tended to be analytical in nature,
often taking the form of differential equations. The emphasis was
on simplicity: such models provided simple description of real
processes and were generally simple to solve. With the advent of
the computer, of course, modeling became more concerned with
incorporating a greater and greater level of detail about a
physical system. In fact, computer models offer the following
important advantages over traditional forms of modeling:6

Computer models can capture real-world complications
better than mathematical models. While computer models
are all, at heart, algorithmic prescriptions for carrying out
the steps of a formal model -- so that the distinction
between model and computer-model is not really clear-cut --
formal mathematical models are generally able to capture
only the gross aggregate characteristics of a system (number
of constituents, average properties, and so on). Computer
models, on the other hand, are more adept at capturing the
nuances that describe real-world systems. There is no easy
way, for example, to use a mathematical model to describe
a feedback between a local piece of information and a
global variable.

Mathematical models can typically be solved only the limit
of infinite-sized populations and/or infinite time.
Mathematical models thus generally provide simplified
idealizations of behavior, while computer models are able

6 See chapter 24 of reference [7].
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to deal with the complications of having finite sized systems
evolving for finite times.

Mathematical models are generally poor at describing
transient behavior. One of the most important general
lessons of complex systems theory is that complex adaptive
systems prefer to live in far-from-equilibrium states. The
least interesting systems are those that reach an
equilibrium. It it is notoriously difficult to model
far-from-equilibrium systems with traditional mathematical
modeling techniques. Computer models are absolutely vital
for studying transient behavior.

Computer models provide a controlled environment.
Computer models provide a controlled environment in
which to interactively study effects of changing initial
conditions, control parameters, boundary conditions, and
so on. Mathematical models are much more inflexible.

One must not be overzealous in incorporating ever finer detail
into a model, however... 

What Price Complexity?

Suppose a model successfully reproduces the dynamics and
behavior of a complex system exactly, which is arguably the best
one could hope to do using any model. For example, suppose,
hypothetically, that someone builds the perfect representation of
land warfare. Two questions should immediately come to mind:

1. How do you know that the purportedly "perfect model" is really
perfect? How do you know, for example, that each and
every behavioral nuance of the "perfect model" is a perfect
reflection of (i.e. is in a one-to-one correspondence with)
the behavioral nuances of the real system?

2. What do you now do with the model? How do you now make
use of what the "perfect model" is telling you in order to
answer whatever questions you developed the model to
answer?

Both questions are obviously important, and neither is trivial to
answer.  The more "complex" or detailed a model becomes, the
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more difficult it is, in general, to understand its behavior;
particularly the behavior that is relevant for understanding the
behavior of the real system that is being modeled. As the
complexity of a model increases, so does our ability to
understand what that model itself is really doing. 

Example: Tierra

Tierra, developed by Tom Ray of the University of Delaware and
the ATR Human Information Processing Research Laboratories
in Kyoto, is an extreme bottom-up approach to the simulation of
the evolution of artificial organisms at the level of the genome.
Tierra is designed to provide a "computer-laboratory"
environment in which Darwinian evolution can proceed entirely
without any intervention from a human operator.

The organisms of Tierra are machine-language computer
programs consisting of linear strings of an assembly-language-like
code written specifically for Tierra. A program -- or organism --
evolves either by mutation or recombination. A typical evolution
of a Tierran system starts from a single organism that is capable
of self-reproduction. Errors occasionally (and deliberately are
made to) creep into the system, rendering some organisms
incapable of further self-reproduction and mutating others so
that they are able to produce offspring more quickly and
efficiently. 

The "struggle of evolution" within Tierra is essentially a struggle
for CPU-time and computer memory. "Survival-of-the-fittest"
means that the fittest organisms of the population are those that
have managed by whatever means (or by whatever strings of code
they have been able to find or construct) to capture more of
these available time and space resources than other organisms.
Organisms that are able to reproduce quickly and use up
relatively little computer memory space in doing so, therefore
come to dominate the population.

There are two reasons for mentioning this model:

1. Simulation versus Instantiation. Tierra illustrates the
difference between what Ray calls a simulation of artificial
life and an instantiation of artificial life. In a simulation,
computer data structures are explicitly designed to
represent real biological entities, whether they be
predators and prey, cells, or whatever. In contrast, in an
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instantiation of artificial life, computer data structures do
not have to explicitly represent any real organism or
process. Rather, data structures must obey rules that are
abstractly related to the rules governing real processes. 

2. Complexity of Instantiation Rivals Complexity of Life.
Tierra appears to capture enough of the dynamics of real
Darwinian evolution to harbor some of the same levels of
complexity. For example, one typically observes a rich
diversity of species in the Tierran population, just as one
does in nature. There are many interesting examples of
basic evolutionary phenomena as well, such as symbiosis
and parasitism (though multicellularity has proven more
of a challenge to obtain in Tierra). The important point to
be made here, however, is that because of the inherent,
irreducible complexity of Tierra "the program," the
problem of describing and understanding the behavioral
characteristics of Tierra "the instantiation of artificial-life"
has effectively been rendered to be just about as complex a
problem of describing and understanding the behavioral
characteristics of a real biological ecology. In short, the cost of
developing a realistic instantiation of a real complex
system is having just as difficult a task of ascertaining what
is "really going on" in the instantiation as ascertaining
what is really going on in the real system.

Might a similar complexity-explosion await us in modeling land combat?
The answer, at this juncture, is unclear. Nonetheless, a great
irony possibly awaits us in developing detailed models of land
combat. It is entirely conceivable, for example, that the only kind
of model that is able to provide us with a deep enough insight
into whatever latent high-level patterns exist in combat from
which we can conclude anything useful, is a model that is itself
fundamentally just as complex a dynamical system as land
combat. In such a case, understanding the model becomes just
an daunting a task as understanding land combat.

The point worth stressing here, however, is that one must always
be mindful of the fact that it is not just the model of a system that one
is after; one is also after an understanding of what the real system
is doing. Being able to develop a sophisticated model of combat --
such as by using a system like SWARM -- is therefore only part of
the story. One must be equally diligent in applying the tool-chest
of ways of looking at the behaviors of systems that complex
system theory provides. In short, the goal of a complex systems
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theory approach to understanding land warfare must not be to
develop a model and stop, but must include options and strategies
for understanding the overall behavior of the model as well.

Thoughtful discussions about the general use of models are given
by Denning [17] and Casti [14]. Bankes [3] discusses the
advantages and disadvantages of using exploratory modeling for
policy analysis.
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Assessment of General Applicability

There are several useful ways to organize a list of potential
applications of complex systems theory to warfare. The simplest,
and most direct, way, is to provide a short discussion of how each
and every tool and methodology that goes under the broad
rubric of "complexity theory"  --  including cellular automata,
evolutionary programming, fuzzy logic, neural networks, and so
on -- applies to warfare. The drawback to this approach, of
course, is that because of the depth and breadth of available
tools, one can soon become hopelessly lost in a meaningless sea
of technical jargon. Moreover, the specter of having the overall
approach be insipidly, and incorrectly, branded a "solution in
search of a problem," is unappealing. 

An alternative (and complementary) approach is to start with a
list of the most pressing problems associated with land combat --
going down the list from predictions of battlefield attrition, to
command and control, to fire support, to intelligence, and so on
-- and to provide suggested avenues of exploration using complex
systems theory. A drawback to this approach is that because it
starts out with a specific list, it is, in principle, capable only of
eliciting the most promising applications to existing (i.e.
conventional) problems, leaving out what may be the most
promising set of applications of complex systems theory to what,
in conventional terms, may not (yet!) be recognized as an "issue"
or "problem." Indeed, complex systems theory's greatest legacy
may prove to be not a set of answers to old questions, but an
entirely new set of questions to be asked of combat and what really
happens on the battlefield. 

In light of the above discussion, it was decided that the most
prudent approach to providing a framework for discussing the
possible applications of complex systems theory to land warfare is
one that respects both sides of the equation. Eight separate Tiers
of Applicability were defined, ranging roughly from least risk and
least potential payoff (at least, as far as a practical applicability is
concerned) for Tier I, to greatest risk and greatest potential
payoff for Tier VIII (see table 3): 

Tier I: General metaphors for complexity in war
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Tier II: Policy and General Guidelines for Strategy

Tier III: Conventional warfare models and approaches

Tier IV: Description of the complexity of combat

Tier V: Combat technology enhancement

Tier VI: Combat aids for the battlefield

Tier VII: Synthetic combat environments

Tier VIII: Original conceptualizations of combat 

Risk vs. Potential Payoff

Because of the very speculative nature of many of the individual
applications making up these eight tiers -- applications range
from those that are currently undergoing some preliminary form
of development to those that currently exist only as vague
theoretical possibilities -- no conventional risk-benefit analysis
could be performed. Figure 5, provided for illustrative purposes
only, shows very roughly how the applications in each of these
eight tiers relates to those in other tiers according to their risk
versus potential payoff tradeoff.
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Figure 5. Risk versus potential payoff for the eight tiers of
applicability (see table 3)

low risk

V

I I

Risk

Potential

low payoff

  high risk
high payoff

 Payoff

Policy

Complexity of Combat

Combat Technology

Combat Aids

Synthetic Combat

Original Conceptualizations
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Conventional Models

Risk is defined loosely to mean the projected level of research
effort that must be invested in order to convert a basic concept
into a finished practical application. The greater the degree of
investment, in terms of dollars, resources and time, the greater
the projected risk. If the projected level of commitment is
relatively small -- as it is for, say, the first "metaphor" tier of
applicability, since it costs effectively nothing to periodically
color one's language with "nonlinear metaphors" -- the risk is
assumed small.

Payoff is defined to mean the potential impact a given application
might have on warfare in general and land combat in particular.
The greater the potential impact an application might have, the
higher is its expected payoff. The Santa Fe Institute's SWARM
project, for example, when it is completed, has the potential to
revolutionize the way complex systems modeling is done in
general and therefore shows great promise to significantly impact
the way land combat is modeled. Thus, Swarm is unquestionably
a "high-payoff" application of complex systems theory.
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Table 3. Eight Tiers of Applicability
Tier of Applicability Description Examples

                                         
                                         
  I. General Metaphors for  

Complexity in War

Build and continue to
expand base of images
to enhance conceptual

links between
complexity and warfare 

nonlinear vice linear
synthesist vice analytical

edge-of-chaos vice
equilibrium

process vice structure
holistic vice reductionist

                                         
II. Policy  and 

General Guidelines 
for Strategy

Guide formulation of
policy and apply basic

principles and
metaphors of CST to
enhance and/or alter

organizational structure

Use general metaphors
lessons learned from

complex systems theory  
to guide and shape

policy making;
Use genetic algorithms

to evolve new forms

                                         
 III. "Conventional"
Warfare Models and

Approaches

Apply tools and
methodologies of CST
to better understand

and/or entend existing
models

chaos in Lanchester
equations

chaos in arms-race
models

analogy with ecological
models

IV. Description of the 
Complexity of Combat

Describe real-world
combat from a CST

perspective

power-law scaling
Lyapunov exponents
entropic parameters

                                         
  V. Combat Technology  

Enhancement

Apply tools and
methodologies of CST

to certain limited aspects
of combat, such as

intelligent
manufacturing,

cryptography and data
dissemination

intelligent
manufacturing

data compression
cryptography

IFF
computer viruses

fire ants

                                      
VI. Combat Aids

Use CST tools to
enhance real-world
combat operations

autonomous robotic
devices

tactical picture agents
tactics/strategy

evolution via GA

                                        
VII. Synthetic Combat

Environments

Full system models for
training and/or to use

as research
"laboratories" 

agent-based models
(SimCity)

Soar/IFOR
SWARM

                                        
VIII. Original

Conceptualizations 
of Combat 

Use CST-inspired basic
research to develop
fundamentally new

conceptualizations of
combat

pattern recognition
controlling/exploiting

Chaos
Universality?
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Tier I: General Metaphors for Complexity in War

"If I can't picture it, I can't understand it." 
-- A. Einstein

"You don't see something until you have the right metaphor to let you
perceive it." -- Thomas Kuhn

The lowest, but certainly not shallowest, tier of applicability of
complex systems theory consists of developing a set of metaphors
by which war in general, and land combat in particular, can be
understood. This set of metaphors represents a new world-view
in which the battlefield is seen as a conflict between two
self-organizing living-fluid-like organisms consisting of many
mutually interacting and co-evolving  parts.

What is a Metaphor?

Etymologically, metaphor (the Greek metafora, "carry over")
means "transfer" or "convey," the transference of a figurative
expression from one area to another. According to the 3rd

edition of the American Heritage Dictionary [2], a metaphor is "a
figure of speech in which a word or phrase that ordinarily
designates one thing is used to designate another, thus making
an implicit comparison. One thing conceived as representing
another."  The Encyclopedia Britannica Online7 adds that metaphor
"makes a qualitative leap from a reasonable, perhaps prosaic
comparison, to an identification or fusion of two objects, to
make one new entity partaking of the characteristics of both.
Many critics regard the making of metaphors as a system of
thought antedating or bypassing logic." In the present context,
we can say that the first tier of applicability of complex systems
theory to land warfare represents a reservoir of metaphorical concepts
and images with which land warfare can be illuminated and
reinterpreted in a new light. 

From the standpoint of the amount of "development time" that
is required to make use of metaphor, the risk is effectively zero.
One either chooses to color one's language with a particular set
of metaphors or one does not. The only groundwork that has to
be done is to carefully choose the right set of metaphors. Yet,
because of the profound relationship that exists between
metaphors and the concomitant reality our language and

7 The World-Wide-Web URL address is http://www.eb.com.
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thoughts create for us, incorporating metaphors borne of
complex systems theory into our discussions of combat can
potentially radically alter our general understanding of warfare.
Therefore, the potential "payoff" is great. But one must at the
same time be mindful of using a metaphor, or metaphors, on
appropriate levels.

A metaphor can apply either to one particular idea or image that
is transferred from, or provides a bridge between, one discipline
to another, or, more generally, to a symbolic relation that unites
the paradigmatic way of viewing an entire field of knowledge.
Emmeche and Hoffmeyer [20] identify four different levels of
metaphorical "signification-transfer" in science as follows:

Level-1: The transfer of single terms to other contexts to
create new meaning.

Level-2: Construction of analogies as part of a specific theory
or a general and systematic inquiry to elucidate
phenomena. The analogy may simply be a heuristic device
or a component of an apparently final theory. 

Level-3: A unifying view of an entire paradigm, often
symbolized by a specific term that refers to the whole frame
of understanding under a given paradigm.

Level-4: The most comprehensive level of signification is the
level on which science itself is understood as irreducibly
metaphorical.

While metaphors can be, and often are, misused, they frequently
serve as powerful conceptual vehicles by which a set of tools,
models and theories is borrowed from one discipline and
meaningfully translated to apply to another discipline. For those
that say that metaphors are by their nature somehow "shallow"
and not "scientific," one need only be reminded that much of
science itself advances first by metaphor. Think of Rutherford's
analogy of the solar system for the atom or Faraday's use of
magnetized iron filings to think about electric fields, among
many other examples. The collection of papers edited by Ortony
[45] has a section devoted to the significance of metaphor in
science.

"Metaphors may be didactic or illustrative devices, models, paradigms, or
root images that generate new models. Some metaphors are heuristic,
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whereas others constitute new meaning...Borrowing is metaphoric in several
ways. Theories and models from other disciplines may sensitize scholars to
questions not usually asked in their own fields, or they may help interpret and
explain, whether that means a framework for integrating diverse elements or
hypothetical answers that cannot be obtained from existing disciplinary
resources. When a research area is incomplete, borrowing may facilitate an
inductive open-endedness. It may function as a probe, facilitating
understanding and enlightenment. Or, it may provide insight into another
system of observational categories and meanings, juxtaposing the familiar
with the unfamiliar while exposing similarities and differences between the
literal use of the borrowing and a new area." [33]

One could argue that much of our reality is structured by
metaphor, although we may not always be explicitly aware of this.
Lakoff and Johnson [34] suggest that "many of our activities
(arguing, solving problems, budgeting time, etc.) are
metaphorical in nature. The metaphorical concepts that
characterize those activities structure our present reality. New
metaphors have the power to create a new reality... we
understand a statement as being true in a given situation when
our understanding of the statement fits our understanding of the
situation closely enough for our purposes." Sometimes the only
way to gain a further, or deeper, understanding of an "accepted"
reality is to take a step sideways and reinterpret that reality from
an alternative vantage point. Creative metaphors help us take
that sideways step.

In speaking about the general role that research centers, such as
the Santa Fe Institute, play in helping decide what metaphors are
or are not appropriate for given problems, the economist Brian
Arthur argues that [66]

"...the purpose of having a Santa Fe Institute is that it, and places like it, are
where the metaphors and a vocabulary are being created in complex systems.
So if somebody comes along with a beautiful study on the computer, then you
can say 'Here's a new metaphor. Let's call this one the edge of chaos,' or
whatever. So what the Santa Fe Institute will do, if it studies enough complex
systems, is to show us the kinds of patterns we might observe, and the kinds of
metaphor that might be appropriate for systems that are moving and in
process and complicated, rather than the metaphor of clockwork."

Metaphors and War

Though conventional military thinking has, through history,
been arguably dominated by the clockwork precision of the
"Newtonian" metaphor -- exemplified by the often cited view of
combat between two adversaries as  "a collision between two
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billiard-balls" -- one can find examples of complexity-ridden
metaphors in many important military historical writings. 

Consider Sun-Tzu's analogy of a military force to water [64]: 

"So a military force has no constant formation, water has no constant shape:
the ability to gain victory by changing and adapting according to the
opponent is called genius." 

Here Sun-Tzu likens movement and maneuver on the battlefield
to the complex dynamics of fluid flow, which is a very apt
metaphor for "combat as a complex system." He also underscores
the importance of adaptability on the battlefield, which is the
hallmark of any healthily evolving complex adaptive system.

In a recent article in International Security, entitled "Nonlinearity
and Clausewitz," Beyerchen argues persuasively that much of
Clausewitz's military thought was colored by a deep intuitive
understanding of nonlinear dynamics [8]:

"On War is suffused with the understanding that every war is inherently a
nonlinear phenomenon, the conduct of which changes its character in ways
that cannot be analytically predicted. I am not arguing that reference to a few
of today's 'nonlinear science' concepts would help us clarify confusion in
Clausewitz's thinking. My suggestion is more radical: in a profoundly
unconfused way, he understands that seeking exact analytical solutions does
not fit the nonlinear reality of the problems posed by war, and hence that our
ability to predict the course and outcome of any given conflict is severely
limited."

Clausewitz's "fog-of-war," "center-of-gravity" and "friction," of
course, are well known. In the last section of Chapter 1, Book
One, Clausewitz compares war to a "remarkable trinity"
composed of (1) the natural force of hatred among the masses,
(2) war's inherent element of chance, and (3) war's
subordination to governmental policy. He concludes with a
wonderful visual metaphor that anticipates one of the
prototypical experimental demonstrations of deterministic chaos:
"Our task therefore is to develop a theory that maintains a
balance between these three tendencies, like an object
suspended between three magnets." [8]

In another section, Clausewitz takes a bold stride beyond the
"combat as colliding billiard-balls" metaphor, and anticipates
almost directly the core element of the new "combat as complex
adaptive systems" view: 
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"...war is not an exercise of the will directed at inanimate matter, as in the case
with the mechanical arts, or at matter which is animate but passive and
yielding as in the case with the human mind and emotion in the fine arts. In
war, the will is directed at an animate object that reacts."  

It is a great testament to Clausewitz's brilliance and deep insight
that he was able to recognize and exploit such provocative
imagery to illustrate his ideas, insofar as there was no such field
as "nonlinear dynamics" in his day. 

In contrast, metaphors of nonlinearity are today much more
commonplace, thanks in large part to the popularization of such
"new sciences" as nonlinear dynamics, deterministic chaos and
complex systems theory. To the extent that Clausewitzian theory
itself accurately describes the fundamentals of war, the
metaphors borne of nonlinear dynamics and complex systems
theory therefore also have much to tell us. However, one should
at the same time be cautious of "plumbing the wells of metaphor"
too deeply, or of expecting, free-of-charge, a greater clarity or
eloquence of expression in return. An unbridled, impassioned
use of metaphor alone, without taking the time to work out the
details of whatever deeper insights the metaphor might be
pointing to, runs the risk of both shallowness and loss of
objectivity. 

Having said this, it is still true that if, in the end, it turns out that
complex systems theory provides no genuinely new insights into
war other than to furnish a rich scaffolding of provocative and suggestive
metaphors around which an entirely new view of warfare can be
woven -- i.e. if the "signification-depth" is essentially confined to
levels 1 and 2 of Emmeche's and Hoffmeyer's hierarchy (see
above) -- complex systems theory will have nonetheless fulfilled
an enormously important function. Time will certainly tell if the
new metaphors are as deep and meaningful as they at first appear
or are "just another passing fad" that will soon fade from view.
But just the fact alone that these new metaphors are being
actively engaged in serious discussion at high levels8 is enough to
suggest that the consensus reality is already being altered. In a
very real sense, the reality of "war as complex adaptive system"
8 As an example, a recent conference sponsored by the Marines Corps
Combat and Development Command -- entitled Non-Linear Studies and Their
Implications for the US Marine Corps -- and at which the interim results of this
project were briefed, attracted more than 100 participants. As another
example, Tom Czerwinski's intensive but popular day-long seminars on the
military implications of the "new sciences," conducted at the National Defense
University  in Washington, D.C., regularly draw many high-ranking leaders
from all branches of the military. 
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did not exist before the discussion started. And the longer a
serious discussion continues in earnest, the longer the
participants will have to develop a more meaningful
complexity-metaphor ridden vocabulary of combat, and the
deeper and more compellingly the images and concepts can take
root in their minds. Indeed, if these new metaphors capture
anything at all that is basic to war, they will, in time, inevitably
take just as firm a hold of the language of war for future
generations as the Newtonian metaphor of "colliding
billiard-balls" has taken hold of the military thinking of past
generations.

Metaphor Shift

The first tier of applicability of complex systems theory to warfare
consists of a set of new metaphors by which war in general, and
land combat in particular, can be understood. This set of
metaphors represents a shift, away from the old "Newtonian"
word-view -- that emphasizes equilibrium and sees the battlefield
as an arena of colliding objects obeying simple, linear laws and
possessing little or no internal structure -- to a new (but,
ironically, older) "Heraclitian"9 world-view, that emphasizes
process and sees the battlefield as a conflict between two
self-organizing living-fluid-like organisms consisting of many
mutually interacting and co-evolving  parts.

The new "Heraclitian" metaphor is a rich interlacing tapestry of
ideas and images, woven of five basic conceptual threads --
nonlinearity, deterministic chaos, complexity, self-organization and
emergence:

Nonlinearity. In colloquial terms, nonlinearity refers to the
property that the whole is not necessarily equal to the sum
of its parts. More precisely, if f is a nonlinear function or
operator, and x is a system input (either a function or
variable), then the effect of adding two inputs, x1 and x2,
first and then operating on their sum is, in general, not
equivalent to operating on two inputs separately and then
adding the outputs together; i.e. f(x+y) is, in general, not
equal to f(x) + f(y).  For example, for the nonlinear

9 The label "Heraclitian," as here used, is patterned after the label used
by the geneticist Richard Lewontin to refer to scientists who see the world as a
process of flow [35]. Heraclitus was an Ionian philosopher who argued that
the world is in a constant state of flux. One of his more famous passages is,
"You can never step into the same river twice."
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function f(x) = x2, f(x1 + x2)
2 = (x1 + x2)

2 = x1
2 + x2

2 + 2x1x2,
and the last term -- 2x1x2 -- appears as an additional
quantity. Nonlinear systems can therefore display a
disproportionately small or large output for a given input.
Nonlinear systems are also generally very difficult to deal
with mathematically, which is the main reason why they are
usually replaced by linear approximations. While the act of
linearization simplifies the problem, however, most of the
interesting behavior of the real nonlinear system is washed
away in the process. The "Heraclitian" metaphor reminds
us that war is inherently nonlinear, and, as such, ought not be
"linearized" away in an attempt to achieve a simplified
"solution."

Deterministic Chaos. Deterministic chaos refers to irregular
or chaotic motion that is generated by nonlinear systems
evolving according to dynamical laws that uniquely
determine the state of the system at all times from a
knowledge of the system's previous history. It is important
to point out that the chaotic behavior is due neither to
external sources of noise nor to an infinite number of
degrees-of-freedom nor to quantum-mechanical-like
uncertainty. Instead, the source of irregularity is the
exponential divergence of initially close trajectories in a
bounded region of the system's phase space. This sensitivity
to initial conditions is sometimes popularly referred to as
the "butterfly effect," alluding to the idea that chaotic
weather patterns can be altered by a butterfly flapping its
wings.  A practical implication of chaos is that its presence
makes it essentially impossible to make any long-term
predictions about the behavior of a dynamical system: while
one can in practice only fix the initial conditions of a
system to a finite accuracy, their errors increase
exponentially fast. This does not mean, however, that
short-term predictability is lost, for deterministic chaos also
implies that within what appears to be erratic motion lies an
underlying order. This underlying order can potentially be
exploited to make short-term predictions.

Complexity. Complexity is an extremely difficult "I know it
when I see it" concept to define, partly because its real
meaning consists of two parts, neither of which is easy to
quantify: (1) system complexity, which refers to the structural,
or organizational, complexity of a system -- examples
include the interacting molecules in a fluid and the
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network topology of neurons in a brain; and (2) behavioral
complexity, which refers to the complexity of actual
behavioral patterns exhibited by complex, or simple,
systems, as they evolve -- examples include deterministic
chaos, multistability, multifractality, and so on. A succinct
summary of what nonlinear dynamics and complex systems
theory together show, conceptually, is that it is possible to
both (a) reduce the system complexity to only a relatively
few degrees-of-freedom (i.e. to generate simplicity from
complexity), and (b) have simple low-dimensional dynamics
exhibit complex behaviors (i.e. to generate complexity
from simplicity). Both of these strategies must be used in
dealing with, and understanding, the complexities of
combat.

Self-Organization. Self-organization is the spontaneous
emergence of macroscopic nonequilibrium organized
structure due to the collective interactions among a large
assemblage of simple microscopic objects. Patterns emerge
spontaneously when, say, certain environmental factors
change. It is important to understand that these
self-organized patterns arise out of a purely internal
dynamics, and not because of any external force. It used to
be believed that any kind of order must be due to some
"oracle" imposing the order from outside of the system.
Self-organization shows that no such oracle is needed.
Examples of self-organization abound: convection flows in
fluids, morphogenesis in biology, concentration patterns in
chemical reactions, atmospheric vortices, etc.

Emergence. Emergence refers to the appearance of
higher-level properties and behaviors of a system that --
while obviously originating from the collective dynamics of
that system's components -- are neither to be found in nor
are directly deducible from the lower-level properties of
that system.  Emergent properties are properties of the
"whole" that are not possessed by any of the individual parts
making up that whole. Individual lines of computer code,
for example, cannot calculate a spreadsheet; an air
molecule is not a tornado; and a neuron is not conscious.
Emergent  behaviors are typically novel and unanticipated.

The metaphor shift, of course, involves many more concepts and
images than that to which these five "conceptual threads" alone
attest, though these five certainly represent the core set. For
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example, in general terms, one can say that where the old
metaphor stressed analysis, in which a system is understood by
being systematically broken down into its parts, the new
metaphor stresses synthesis, in which how a system behaves is
discovered by building it up from its pieces. Where the old
metaphor stressed a mechanistic dynamics, in which combat is
viewed as a sequence of strictly materially caused events, the new
metaphor stresses an evolutionary dynamics, in which combat is
viewed as a co-evolutionary process among adapting entities.
Where the old metaphor stressed equilibrium and stability, in
which "solutions" to combat are found after the system "settles
down," the new metaphor stresses the importance of
far-from-equilibrium states and the continual quest for perpetual
novelty, in which combat never settles down to an equilibrium,
and is always in pursuit of the so-called "edge-of-chaos" (see Part
I, page [76]).

Tables 4 and 5 illustrate the metaphor shift from the old
"Newtonian" view of the combat to the new "Heraclitian" view.
Table 4 compares the old and new metaphors from the
standpoint of their respective vocabularies. It is by no means a
complete list of relevant words and concepts, and is meant only
to capture some of the essential ideas. Table 5 extends this list of
words by using various contexts within which to compare some of
the basic principles underlying the two metaphors. 

Further speculations on possible connections between the "new
sciences" and war on a metaphor level can found in Beyerchen
[8], Beaumont [6], Hedgepeth [25], Saperstein [54], and
Schmitt [54].
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Table 4. The shift from "Newtonian" to "Heraclitian" metaphors as
reflected in their corresponding Vocabularies of concepts and images

             Old Metaphor               
("Newtonian")

  New Metaphor 
 ("Heraclitian")

Analytical Synthesist

Basic elements are
"Quantities"

Basic elements are "Patterns"

Behavior is Contingent and
Knowable

Behavior is Emergent and
often Unexpected

Being Becoming

Clockwork Precision Open-ended Unfolding

Closed System Open System

Complexity Breeds Complexity Complexity Can Breed
Simplicity

Deterministic Deterministically Chaotic

Equilibrium Far-From-Equilibrium/
"perpetual novelty"

Individualistic Collective

Linear Nonlinear

Linear Causation Feedback Loop/Circular
Causality

Mechanistic Dynamics Evolutionary Dynamics

Military "Operation" Military "Evolution"

Combat as Collision Between
Newtonian "Billiard-Balls"

Combat as Self-Organized
ecology of living "fluids"

Order Inherent Disorder

Predesigned Emergent

Predictable Unpredictable

Quantitative Qualitative

Reductionist Holistic

Solution Process and Adaptation

Stability "Edge-of-Chaos"

Top-Down Bottom-Up and Top-Down

etc. ..... etc. .....
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Table 5. A Comparison Between some of the principles underlying
"Newtonian" and "Heraclitian" Metaphors

Context "Newtonian" Metaphor "Heraclitian" Metaphor

                                 
Complex behavior

                                                 
Complex behavior requires

complex models

Simple models often suffice to
describe complex systems;
complexity from simplicity and

simplicity from complexity

Patterns of behavior Each qualitatively different
pattern of behavior requires a

different equation

Qualitatively different patterns
of behavior can be described

by the same underlying
equation

Description of
Behavior

Each qualitatively different
kind of behavior requires new
equation or set fo equations

One equation harboirs a
multitude of qualitatively

different patterns of behavior

Effects of small
perturbations

Small perturbations induce
small changes

Small perturbations can have
large consequences

                                
How to understand

system

A system can be understood by
breaking it down into and

analyzing its simpler
components

Systems can be understood
only by respecting the mutual

interactions among its
components; look at the whole

system

Origin of 
Disorder

Disorder stems mainly from
unpredictable forces outside of

system

Disorder can arise from forces
entirely within the system

Origin 
          of Order           

          

Order must be imposed from
outside the system 

Order can arise in a purely
self-organized fashion within

the system

Nature of 
observed order

Order, once present, is
pervasive and appears both

locally and globally

A system may appear locally
disordered but possess global

order

                             
"Goal"

Goal is to develop "equations"
to describe behavior;

determined by isolating effect
of one variable at a time

Goal is to understand how
entire system responds to

various contexts, with no one
variable dominating

                                 
Type of "solutions"

Goal is to search for "optimal"
solution

No optimal solution exists, as
the set of problems and
constraints continuously

changes

                               
Predictability

Assuming that the "correct"
model is found and initial

conditions are known exactly,
everything is predictable and

controllable, 

Long-term predictability may
be unattainable even in

principle; behavior may be
predicted for short-times only

Nature of causal flow Causation flows from the
bottom up

Causation flows both from
bottom up and from the top down
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Tier II: Policy and General Guidelines for Strategy

What Does the New Metaphor Give Us?

Roger Lewin, in his popular book on complexity [37],
reproduces a fragment of a conversation he once had with
Patricia Churchland, a well-known neurobiologist:

"Is it reasonable to think of the human brain as a complex dynamical system?"
I asked. "Its obviously true," she replied quickly. "But so what? Then what is
your research program? ... What research do you do?"

Notice that if "human brain" is replaced in this fragment by "land
combat," the fragment retains the potent sting of Churchland's
challenge. Every new research endeavor must begin with at least
these two basic steps: (1) a prior justification that the endeavor is
a reasonable one to consider undertaking, and (2) a plan of
attack. As far as the endeavor of applying complex systems theory
to land warfare is concerned, the first step is easy: land combat --
on paper -- has almost all of the key attributes that any reasonable
list of attributes of a complex adaptive system must include (see
table 1 appearing in the Executive Summary). The second step is
by far the more difficult one to take: now that we have
established the similarity, what do we do with the connection?

Policy

"If you have a truly complex system, then the exact patterns are not
repeatable. And yet there are themes that are recognizable. In history, for
example, you can talk about 'revolutions,' even though one revolution might
be quite different from another. So we assign metaphors. It turns out that an
awful lot of policy-making has to do with finding the appropriate metaphor.
Conversely, bad policy-making almost always involves finding inappropriate
metaphors. For example, it may not be appropriate to think about a drug
'war,' with guns and assaults."10 

The first step to take beyond merely weaving threads of
metaphor is to apply the basic lessons learned from the study of
complex systems to how we formulate strategy and general policy.
This assumes implicitly that political systems and world
communities can be just as well described as complex adaptive
systems as can be human brains and collections of combat forces.
For example, consider that the essence of a (successfully

10 Quote attritbuted to Brian Arthur in reference [66].
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evolving) complex adaptive complex is to exist in a
far-from-equilibrium state and to continually search for novelty
and new solutions to changing problems. An important lesson
learned for a complex systems theoretic approach to policy
making is therefore to shift from general policies that emphasize
a means to achieve stability to policies that encourage a continual
co-evolution of all sides. 

Similarly, nonlinear dynamics teaches us that it is the
nonlinearities embedded in a set of processes that are
responsible for instability and irregular appearing behavior. The
lesson learned here for dealing with adversaries in a conflict is to
focus attention on the nonlinear drivers of an enemy's system, for
these are the elements that can potentially induce the greatest
effect from the least effort. 

Table 6 provides general behavioral guidelines and strategies for
conduct and policy making derived from the "Heraclitian"
metaphor.

Organizational Structure

A thorough understanding of complexity and complex adaptive
systems can be applied to enhance and/or alter organizational
and command structures. Practical techniques can be developed
for the military to re-examine their metaphors and beliefs, and to
adapt new ones as conditions change. General techniques for
building "learning organizations," such as adapted from a systems
theory model of management and described in Senge's Fifth
Discipline [57] can be applied. These techniques include general
strategies for dealing with the unexpected and/or accidental,
and resolving the dichotomous needs for both stability and
creativity. The overall objective is to use the basic lessons of
complex systems theory to develop sets of internal organizational
"rules" and strategies that are more conducive to adaptation and
self-organization. Genetic algorithms, too, can be used to search
for better command and control structures (see Tier-VI).
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Table 6. General behavioral guidelines and strategies for conduct
and policy making derived from the "Heraclitian" metaphor

General Guideline Description

                                               
Exploit Collective Action

Exploit the synchronous parallel cooperative effort of
many low-level agents rather than solving for a global
solution all at once

Expect Change Never take you eyes off, or turn your back on, a
system -- systems continually evolve and change

  Stop looking for
 "Optimal" Solutions

Forget about optimizing a solution to a problem -- the
problem is constantly changing

                                          
"Guide" Behavior, 

Do not "Fix It"

Emphasize the process vice solution approach.
Instead of focusing on "single points" of a trajectory --
or snapshots in time of key events that unfold as a
policy is implemented -- focus on how to continue to
nudge the system in a favorable direction

                                                
Look for Global Patterns

Search for global patterns in time and/or space scales
higher than those on which the dynamics is defined;
systems can appear locally disordered but harbor a
global order

                                           
Apply 

Holistic Understanding

Focus more on identifying interdependent behaviors
(i.e. how a system responds to different contexts and
when interdependent sets of parameters are allowed
to change) rather than looking for how a system
changes when everything is left constant and one
parameter at a time is allowed to change

 Focus More "Within" for 
Understanding Source of

Apparent Irregularity

Irregular and random appearing behavior that
appears to be due either to outside forces or elements
of chance may be due solely to the internal dynamics
of a system

Look for Recognizable 
Themes and  Patterns

Exact patterns may not be repeated but the general
underlying themes will remain the same

Focus on Process vicee Static
Measures

Study the logic, dynamics, process, etc. not the
material constituents of a system

                                             
To "Break Down" Does Not

Always Mean to "Get Simpler"

If the behavior of a system is described by a fractal,
successively finer views of the fractal reveal
successievly finer levels of detail. Things do do not
necessarily "get simpler."

                                              
Exploit Nonlinearity

Focus attack on the nonlinear processes in an
enemy's system, for these are the processes that can
potentially induce the greatest effect from least effort

Do not Necessarily 
Frown on Chaos

A bit of irregularity or "chaos" is not necessarily a bad
thing, for it is when a system is at the "edge-of-chaos"
that it is potentially best able to adapt and evolve

Exploit Decentralized
 Control

Encourage decentralized control, even if each "patch"
attempts to optimize for its own selfish benefit; but
maintain interaction among all patches

                                                
 Find Ways to be 
More Adaptable

The most "successful" complex systems do not just
continually adapt, they struggle to find ways to adapt
better; move towards a direction that gives you more
options
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Intelligence Analysis

Conventional intelligence analysis consists of first assessing the
information describing a situation and then predicting its future
development. The task is complicated by the fact that the
available information is often incomplete, imprecise and/or
contradictory. Moreover, the information may be falsified or
planted by the adversary as part of a deliberate disinformation
campaign. The traditional reductionist approach of dealing with
these problems consists of six general steps [67]:

1. Data Management: all collected information is first
processed to conform to selected forms of data
management (index cards, computer data-bases, etc.)

2. Reliability Grading: information is graded for its veracity,
which depends on such factors as source of information
and existence of collaborative sources

3. Subject Sorting: information is broken down into more
manageable parts, typically by subject

4. Relevance Filtering: subject sorted information is parsed for
degrees of relevance (sorting "wheat from chaff")

5. Search for "Trigger Facts": filtered information is searched
for characteristic facts and/or events that are known or
suspected as being triggers or indicators of specific future
events

6. Search for Patterns: information is examined for clues of
patterns of activity and linkages to assist in making specific
predictions

While there is nothing sacrosanct about any of these six steps,
and each intelligence analyst undoubtedly evolves his or her own
unique style and approach, the fundamentally reductionist
manner in which all such analysis is invariably conducted suffers
from a number of significant drawbacks [67]. For example, the
process of collating the information often curtails an analyst's
ability to respond quickly to important indicators. Adherence to
a predefined order (such as requiring that all information be fit
into an existing data management system) may also lead to
difficulties in assimilating any unexpected or unusual
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information. In the worst case, information that does not strictly
conform to accepted or understood patterns and categories or
does not conform to an anticipated course of events, may be
ignored and/or discarded. Finally, a predisposition to filtering
out and assimilating only "conventional" (i.e. "doctrinal") forms
of information makes it hard for an analyst to appreciate (and
therefore respond to) other, perhaps unconventional, variables
that may in fact play a vital role in determining the future
behavior of a system (and without which an accurate prediction
may be impossible to obtain). 

Complex systems theory, with its emphasis on pattern
recognition and its general openness-of-mind when it comes to
what variables and/or parameters might be relevant for
determining the future evolution of a system, has many
potentially useful suggestions to offer the intelligence analyst for
his/her analysis of raw intelligence data. For example, complex
systems theory persuades an analyst, in general, not to discard
information solely on the basis of that information not
conforming to a "conventional wisdom" model of an adversary's
pattern of activity. Instead, and as has been repeatedly stressed
throughout this paper, complex systems theory teaches us to
recognize the fact that apparently irrelevant pieces of
information may contain vital clues as to an adversary's real
intentions.

Policy Exploitation of Characteristic Time Scales of Combat

A fundamental property of nonlinear systems is that they
generally react most sensitively to a special class of aperiodic
forces. Typically, the characteristic time scales of the optimal
driving force match at all times the characteristic time scales of
the system. In some cases the optimal driving force as well as the
resulting dynamics are similar to the transients of the
unperturbed system [27].

The information processing in complex adaptive systems and the
general sensitivity of all nonlinear dynamical systems to certain
classes of aperiodic driving forces are both potentially exploitable
features. Recall that one of the distinguishing characteristics of
complex systems is their information processing capability.
Agents in complex adaptive systems continually sense and collect
information about their environment. They then base their
response to this information by using internal models of the
system, possibly encoding and storing data about novel situations

Land Warfare and Complexity, Part II: An Assessment of the Applicability of Nonlinear Dynamics and Complex Systems
Theory to the Study of Land Warfare, Andy Ilachinski, Center for Naval Analyses CRM 96-68, July 1996

59



for use at a later time. According to the edge-of-chaos idea (see Part
I [28], page 76), the closer a system is to the edge-of-chaos --
neither too ordered nor too chaotic -- the better it is able to
adapt to changing conditions. In Kauffman's words, 

"Living systems exist in the...regime near the edge of chaos, and natural
selection achieves and sustains such a poised state...Such poised systems are
also highly evolvable. They can adapt by accumulation of successive useful
variations precisely because damage does not propagate widely...It is also
plausible that systems poised at the boundary of chaos have the proper
structure to interact with and internally represent other entities of their
environment. In a phrase, organisms have internal models of their worlds
which compress information and allow action...Such action requires that the
world be sufficiently stable that the organism is able to adapt to it. Were
worlds chaotic on the time scale of practical action, organisms would be hard
pressed to cope."11

Now compare this state-of-affairs with Retired USAF Colonel
John Boyd's Observe-Orient-Decide-Act (OODA) loop [10]. In Boyd's
model, a system responds to an event (or information) by first
observing it, then considering possible ways in which to act on it,
deciding on a particular course of action and then acting. From a
military standpoint, both friendly and enemy forces continuously
cycle through this OODA process. The objective on either side is
to do this more rapidly than the enemy; the idea being that if you
can beat the enemy to the "punch" you can disrupt the enemy's
ability to maintain coherence in a changing environment. One
can also imagine exploiting the relative phase relationship
between friendly and enemy positions within the OODA loop.
For example, by carefully timing certain actions, one can
effectively slow an enemy's battle-tempo by locking the enemy
into a perpetual Orient-Orient mode.

Cooper [15] has generalized this notion to what he calls "phase-
dominance," where the idea is to exploit the natural operating
cycles and rhythms of enemy forces and execute appropriate
actions exactly when they are needed. In phase-dominance, "time
becomes the critical determinant of combat advantage."

11 Page 232 in reference [30].

Land Warfare and Complexity, Part II: An Assessment of the Applicability of Nonlinear Dynamics and Complex Systems
Theory to the Study of Land Warfare, Andy Ilachinski, Center for Naval Analyses CRM 96-68, July 1996

60



Tier III: "Conventional" Warfare Models and Approaches

Tier III consists of applying the tools and methods of nonlinear
dynamics and complex systems theory to more or less
"conventional models" of combat. The idea on this tier is not so
much to develop entirely new formulations of combat so much as
extending and generalizing existing forms using a new
mathematical arsenal of tools. Examples include looking for
chaos in various generalized forms of Lanchester equations,
applying nonlinear dynamics to arms-race models, exploiting
common themes between equations describing predator-prey
relations in natural ecologies and the equations describing
combat, and so on.

Testing for the Veracity of Conventional Models

A very practical application of one of the most widely used tools
of complex systems theory -- namely, genetic algorithms -- is to the
sensitivity analysis and general testing of conventional models of
complex systems. Consider, for example, Miller's Active Nonlinear
Test (ANT) approach to testing the veracity of complex
simulation models [40].

As large-scale computational models grow in popularity because
of their ability to help analyze critical scientific, military, and
policy issues, the same conditions that make them so appealing
are also the ones that make testing such models more and more
difficult. Such models typically deal with enormously large
search, or "solution," spaces and are characterized by a high
degree of nonlinearity. Traditional "sensitivity analysis"
techniques, which probe for a model's reaction to small
perturbations in order to get a feel for how sensitive the model is
to variations in values of key control parameters, require simple
linear relationships within the model in order to be effective. 

This last point is a very important one. If the underlying
relationships among a model's key parameters is inherently
nonlinear -- as it must be in any reasonably realistic model of a real
complex system -- then information about the effect of
systematically perturbing individual parameters may not be
useful in determining the effects of perturbing groups of
parameters. To see this, suppose that the "model" is given by the
functional form f(x1,x2) = x1x2 (which is obviously nonlinear).
Then f(x1+∆x1,x2) = x1x2 + x2∆x1 = f(x1,x2) + x2∆x1. Similarly,
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f(x1,x2+∆x2) = f(x1,x2) + x1∆x2. But f(x1+∆x1,x2+∆x2) = f(x1,x2) +
x2∆x1 +  x2∆x1 + ∆x2∆x1. Thus the effect of changing both x1 and
x2 simultaneously differs from the adding the effects of the
individual perturbations to x1 and x2 by the last term,  ∆x2∆x1.
(The linear approximation works well enough, of courser, as
long as either the perturbations are kept small or the
nonlinearity is small.)

The idea behind Miller's ANT approach is to use a genetic
algorithm (or any other nonlinear optimization algorithm) to
search the space of sets of reasonable model perturbations. The
objective is to maximize the deviation between the original
model's prediction and that obtained from the model under the
perturbations. Note that while one could, in principle, detect
nonlinearities by exhaustively searching through the space of all
possible combinations of pertinent parameters, the potentially
enormous space that the resulting combinatoric explosion gives
rise to makes such an exhaustive search unfeasible even when
only a relatively few parameters are involved. Thus, Miller's
objective is to use a genetic algorithm to perform a directed
search of groups of parameters.

ANTs work essentially by probing for weakness in a model's
behavior. The idea is to obtain  an estimate of the maximum
error that is possible in a model by actively seeking out a model's
worst-case scenarios. Miller is quick to point out that this
approach has two limitations: (1) it fails to give an estimate of the
likelihood that the worst-case scenarios will actually occur
(though other techniques, such as Monte Carlo methods, can be
used for this), and (2) the inability to "break" a model by probing
its worst-case scenarios does not guarantee a model's overall
quality (since a not terribly well designed model could simply be
insensitive to its parameters). 

Variations of the basic ANT technique could prove useful for
testing many existing models and simulations of land combat.

Non-Monoticities and Chaos

A fundamental lesson of nonlinear dynamics theory is that one
can almost always expect to find some manifestation of chaos
whenever nonlinearities are present in the underlying dynamics
of a model. This fundamental lesson has potentially significant
implications for even the simplest combat models. 
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Miller and Sulcoski [41]-[42], for example, report fractal-like
properties and a sensitivity-to-initial conditions in the behavior of
a discretized model of the Lanchester equations (augmented by
nonlinear auxiliary conditions such as reinforcement and
withdrawal/ surrender thresholds).

A recent RAND study12 has uncovered chaotic behavior in a
certain class of very simple combat models in which
reinforcement decisions are based on the state of the battle. The
study looked at non-monoticity and chaos in combat models,
where "monotonic behavior" is taken to mean a behavior in
which adding more capabilities to only one side leads to at least
as favorable an outcome for that side. 

The presence of nonmonoticities has usually been interpreted to
mean that there is something wrong in the model that needs to
be "fixed" and has been either treated as an anomaly or simply
ignored. The main thrust of the RAND report is that, while
non-monoticities often do arise from questionable programming
skills, there is a source of considerably more problematic
non-monoticities that has its origins in deterministic chaos .

The RAND study found that "a combat model with a single
decision based on the state of the battle, no matter how precisely
computed, can produce non-monotonic behavior in the
outcomes of the model and chaotic behavior in its underlying
dynamics." 

The authors of the report draw four basic lessons from their
study:

models may not be predictive, but are useful for
understanding changes of outcomes based on incremental
adjustments to control parameters

scripting the addition of battlefield reinforcement (i.e.
basing their input on time only, and not on the state of the
battle) generally eliminates chaotic behavior

one can identify input parameters figuring most
importantly in behavior of non-monoticities -- these are the
size of reinforcement blocks and the total number of
reinforcements available to each side

12 J. A. Dewar, J. J. Gillogly and M. L. Juncosa, "Non-Monoticity, Chaos,
and Combat Models," RAND , R-3995-RC, 1991.
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Lyapunov exponents are useful to evaluate a model's
sensitivity to perturbations

In general, the RAND report concludes that 

"In any combat model that depends for its usefulness on
monotonic behavior in its outcomes, modeling combat decision
based on the state of the battle must be done very carefully. Such
modeled decisions can lead to monotonic behavior and chaotic
behavior and the only sure ways (to date) to deal with that
behavior are either to remove state dependence of the modeled
decisions or to validate that the model is monotonic in the region
of interest."

Minimalist Modeling

Dockery and Woodcock, in their massive treatise The Military
Landscape [18], provide a detailed discussion of many different
"minimalist models" from the point of view of catastrophe theory
and nonlinear dynamics. Minimalist modeling refers to "the
simplest possible description using the most powerful
mathematics available and then" adds layers "of complexity as
required, permitting structure to emerge from the dynamics."
Among many other findings, Dockery and Woodcock report that
chaos appears in the solutions to the Lanchester equations when
modified by reinforcement. They also discuss how many of the
tools of nonlinear dynamics can be used to describe combat. 

Using generalized predator-prey population models to model
interactions between military and insurgent forces, Dockery and
Woodcock illustrate (1) the set of conditions that lead to a
periodic oscillation of insurgent force sizes, (2) the effects of a
limited pool of individuals available for recruitment, (3) various
conditions leading to steady state, stable periodic oscillations and
chaotic force-size fluctuations, and (4) the sensitivity to small
changes in rates of recruitment, disaffection and combat attrition
of simulated force strengths.

This kind of analysis can sometimes lead to counter-intuitive
implications for the tactical control of insurgents. In one
instance, for example, Dockery and Woodcock point out that
cyclic oscillations in the relative strengths of national and
insurgent forces result in recurring periods of time during which
the government forces are weak and the insurgents are at their
peak strength. If the government decides to add too many
resources to strengthen its forces, the chaotic model suggests that
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the cyclic behavior will tend to become unstable (because of the
possibility that disaffected combatants will join the insurgent
camp) and thus weaken the government position. The model
instead suggests that the best strategy for the government to
follow is to use a moderately low level of military force to contain
the insurgents at their peak strength, and attempt to destroy the
insurgents only when the insurgents are at their weakest force
strength level of the cycle.13

Generalizations of Lanchester's equations

In 1914, Lanchester introduced a set of coupled ordinary
differential equations as models of attrition in modern warfare.
The basic idea behind these equations is that the loss rate of
forces on one side of a battle is proportional to the number of
forces on the other. In one form of the equations, known as the
directed-fire (or square-law) model, the Lanchester equations are
given by the linear equations dR(t)/dt = - αB B(t) and dB(t)/dt =
- αR R(t), where R(t) and B(t) represent the numerical strengths
of the red and blue forces at time t, and αR and αB represent the
constant effective firing rates at which one unit of strength on
one side causes attrition of the other side's forces. An
encyclopedic discussion of the many different forms of the
Lanchester equations is given by Taylor ([62], [63]).

While the Lanchester equations are particularly relevant for the
kind of static trench warfare and artillery duels that characterized
most of World War I, they are too simple and lack the spatial
degrees-of-freedom needed to realistically model modern
combat. The fundamental problem is that they idealize combat
much in the same way as Newton's laws idealize the real chaos
and complexity ridden physics of the world. Likewise, almost all
Lanchester equation based attrition models of combat suffer
from many basic shortcomings:

determinism, whereby the outcome of a battle is
determined solely as a function of the initial conditions,
without regard for Clausewitz's "fog of war" and "friction"

use of effectiveness coefficients that are constant over time

static forces

13 Reference [77], pages 137-138.
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homogeneous forces with no spatial variation

no combat termination conditions

the assumption that target acquisition is independent of
force levels

no consideration of the suppression effects of weapons

and so on ...

Perhaps the most important shortcoming of virtually all
Lanchester equation based models is that such models rarely, if
ever, take into account the human factor; i.e. the psychological
and/or decision-making capability of the individual combatant.

Adaptive Dynamic Model of Combat

The adaptive dynamic model of combat is a simple analytical
generalization of Lanchester's equations of combat that adds a
basic behavioral dimension by building in a feedback between
troop movement and attrition. It is discussed by Epstein [22].

Epstein introduces two new parameters: (1) αa, which is the daily
attrition rate the attacker is willing to suffer in order to take
territory, and (2) αd, which is the daily attrition rate the defender
is willing to suffer in order to hold territory. He uses these
parameters to express some simple expectations of human
behavior. If the defender's attrition rate is less than or equal to
αd, for example, the defender is assumed to remain in place;
otherwise this "pain threshold" is exceeded and he withdraws to
restore his attrition rate to more acceptable levels. Similarly, if
the attackers "pain threshold" is exceeded, he cuts off the attack.
Combat is seen as the interplay of "two adaptive systems, each
searching for its equilibrium, that produces the observed
dynamics, the actual movement that occurs and the actual
attrition suffered by each side." [22] Postulating some simple
functional forms to express intuitive relationships that must hold
true among prosecution, withdrawal and attrition rates, Epstein
derives expressions for adaptive prosecution and withdrawal rates
for attacking and defending forces. Though we will not go into
the details here, Epstein's simple model seems to capture some of
the basic behavioral characteristics that are so glaringly missing
from Lanchester's equations.
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Lotka-Volterra Equations 

Studies in predator-prey interactions in natural ecologies have a
rich analytical history dating back to the middle 1920s. Around
that time, Lotka and Volterra independently proposed the first
mathematical model for the predation of one species by another
to explain the oscillatory level of certain fish in the Atlantic. If
N(t) is the prey population and P(t) is the predator population
at time t then dN/dt = N (a - bP), dP/dt = P (cN - d), where a,b,c,
and d are positive constants. The model assumes: (1) prey in
absence of predation grows linearly with N; (2) predation
reduces prey's growth rate by a term proportional to the prey and
predation populations; (3) the predator's death rate, in the
absence of prey, decays exponentially; (4) the prey's contribution
to the predator's growth rate is proportional to the available prey
as well as to the size of the predator population. 

What is interesting about these simple Lotka-Volterra equations
is that they describe exactly the same model as the one Lanchester
used to represent land combat. The same kind of oscillatory
behavior found in Lanchester's equations, for example, is
exhibited by predator-prey systems. Much work, of course, has
been done since Lotka's and Voltera's time to generalize their
basic equations, including the addition of nonlinear terms to
model real-world interactions better, incorporating the
complexities of real-world life-cycles and the immune response of
hosts in host-parasite systems, modeling interactions between
predator-prey systems and their natural environments, exploring
the origins of multistability, and so on. However, despite the
many conceptual advances that have been made, which today
also include the use of sophisticated computer modeling
techniques such as multi-agent based simulations, this rich
history of analytical insights into the behavior of predator-prey
systems has heretofore been largely ignored by conventional
operations research "analysis" of combat. Simple
Lotka-Voltera-like models of ecologies make up a sizable fraction
of the models used in complex systems theory and can potentially
be exploited to provide insights into the general behavioral
patterns of attacker-versus-defender on the battlefield. One
possible approach is discussed in [18].
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Other generalizations of the Lanchester equations include:

Partial differential equations to include maneuver;
primarily work done by Protopopescu at the Oak Ridge
National Laboratory

Fuzzy differential equations to allow for imprecise
information; see Dockery, [18]

Stochastic differential equations to describe attrition
processes under uncertainty

One can also speculate that there might be a way to generalize
the Lanchester equations to include some kind of an internal
aesthetic. That is to say, to generalize the description of the
individual combatants to include an internal structure and
mechanism with which they can adaptively respond to an
external environment.  See, for example, N. Smith's "Calculus of
ethics,"  [58].

Nonlinear dynamics and chaos in arms-race models

G. Mayer-Kress [39] has written many papers on nonlinear
dynamics and chaos in arms-race models and has suggested
approaches to socio-political issues. His approach is to analyze
computational models of international security problems using
nonlinear, stochastic dynamical systems with both discrete and
continuous time evolution. Many of Mayer-Kress' arms-race
models are based on models of population dynamics first
introduced by L. F. Richardson after World War I [51]. 

Mayer-Kress finds that, for certain ranges of values of control
parameters, some of these models exhibit deterministic chaos. In
one generalization of a discrete version of Richardson's
equations that models the competition among three nations, for
example, Mayer-Kress finds that the two weaker nations will form
an alliance against the stronger nation until the balance of power
shifts. The alliance formation factor and economical constraints
induce nonlinearities into the model that result in multiple
stable solutions, bifurcations between fixed point solutions and
time-dependent attractors. He has also identified parameter
domains for which the attractors are chaotic.
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Tier IV: Description of the Complexity of Combat

"The aim of science is not things themselves, as the dogmatists in their
simplicity imagine, but the relations among things; outside these relations

there is no reality knowable."  -- H. Poincare

Tier-IV consists of using the tools and methodologies of complex
systems theory to describe and help look for patterns of
real-world combat.  It is the level on which complexity theory is
effectively presented with a "candidate complex system" to study
-- that system being land combat -- and given the opportunity to
use its full arsenal of tools to explore in earnest the viability of
this candidacy. Thus, this tier asks such basic questions as "What
really happens on a battlefield?," "What kinds of complex systems
theory inspired measures are appropriate to describe combat?,"
"Are there any embedded patterns, either in historical data or
newly acquired data using sets of new measures, from which one
can make short-term predictions of behavior?" 

This tier consists of three sub-tiers of applicability:

Sub-Tier 1: Short-term predictability, the objective of which is
to exploit techniques such as attractor reconstruction to
make short-term predictions about the progress of a battle
or series of battles. Note that this does not require knowing
the underlying rules governing the behavior of combat
and/or having a working model

Sub-Tier 2: Confirmation of chaos from historical evidence, the
objective of which is to look for characteristic signs of
underlying deterministic chaotic behavior in historical
combat records. Some work has already been done in this
area, most notably by Tagarev, et. al. [61], but much more
remains.

Sub-Tier 3: Development  of measures appropriate for describing
combat from a complex systems theoretic point of view. This
sub-tier includes using such measures as Lyapunov
exponents, power spectra, information dimension, and so
on to redefine traditional data-collection requirements and
measures-of-effectiveness of combat forces.
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Figure 6. Four continuations of a chaotic time series using the
embedding technique; solid lines represent predicted values, dashed
lines represent the actual data

Attractor Reconstruction from Time-Series Data

Time-series analysis deals with the reconstruction of any
underlying attractors, or regularities, of a system from
experimental data describing a system's behavior (see Part I,
pages 57-59). Techniques developed from the study of nonlinear
dynamical systems and complex systems theory provide powerful
tools whereby information about any underlying regularities and
patterns in data can often be uncovered. Moreover, these
techniques do not require knowledge of the actual underlying
dynamics; the dynamics can be approximated directly from the
data. These techniques provide, among other things, the ability
to make short- (and sometimes long-) term predictions of trends
in a system's behavior, even in systems that are chaotic.
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Figure 6 shows an example of the kind of predictions that are
possible with a popular technique called time-delayed embedding.
Given 1000 data points (not shown) of the chaotic fluctuations in
a far-infrared laser (approximately described by three coupled
nonlinear ordinary differential equations) from which to learn
the underlying system's dynamics, Sauer14 uses a modified
embedding technique to predict the continuation of the time
series for 200 additional time steps. Figure 6 (a-d) shows four
continuations of length 200, each with a different initial point. In
each of the plots, the solid curve represents the predicted
continuation, and the dashed curve represents the true
continuation.

Fractals and Combat

There are several suggestive fractal geometric aspects to land
combat. For example, deployed forces are often assembled in a
self-similar, or fractal, manner and are organized in a manifestly
self-similar fashion: fire teams "look like" squads, which "look
like" platoons, which "look like" companies, and so on. The
tactics that are appropriate to each of these levels likewise shows
the same nested mirroring. While a battalion is engaged in a
frontal attack, for example, one of the companies could be
conducting a supporting flanking attack that itself consists of two
platoons engaged in a smaller-scale version of a frontal attack
against two other platoons. 

The FEBA (Forward Edge of the Battle Line) can also be
characterized as a fractal , with greater and greater levels of detail
emerging as the resolution is made finer. Woodcock and Dockery
[18], for example, have plotted the FEBA length (in miles)
versus the step size used in measuring the length using historical
data from the German Summer Offensive of 1941 into Russia
during World War II. Figure 7 shows three front line traces
performed for three selected dates taken from the beginning,
middle and end of the offensive. In each case, the log-log plot
shows a close fit to the power-law fit characteristic of fractals:

, where h is the measurement step size, L is the FEBAL(h) ∝ h1−D

length and D is the fractal dimension.

14 Tim Sauer, "Time series prediction by using delay coordinate
embedding," pages 175-193 in Nonlinear Modeling and Forecasting, edited by M.
Casdagli, and S. Eubank, Addison-Wesley, 1992.
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What this does or does not tell us about combat in general is an
open question. The largest fractal dimension belongs to the
FEBA trace recorded for the most active part of the campaign. Is
this suggestive of something fundamental, or -- because fractal
dimension depends sensitively on the degree to which a line
deviates from "straightness" -- is it purely a consequence of the
very convoluted nature of this particular trace? As a crude
measure of the "complexity" of the evolving FEBA, the fractal
dimension might be used to give a feel for the efficacy of a
particular advance. Woodcock and Dockery suggest that the most
immediate application of the fractal FEBA is to modeling, since it
offers the possibility to generate a FEBA directly without detailed
modeling. Moreover, a comparison between the daily changes in
the fractal dimension of the FEBA calculated from an actual
campaign and a computer model can be used to calibrate the
model.

Figure 7. Power law scaling for FEBA length of German summer
offensive of 1941 into Russia15

More generally, fractals dimensions of a variety of combat related
systems (more examples are given below) can be used to quantify
both the relevance of large-scaled events to the overall combat
process and the subtle interrelationship that exists between
small-scale events and large-scale outcomes.

Evidence of Chaos in War From Historical Data?

Tagarev, et. al. [61] provide extensive historical evidence of chaos
in tactical, operational and strategic levels of military activity.
Tagarev, et. al. examine (1) US fixed-wing aircraft losses during

15 Reference [18], page 321.
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the Vietnam war, (2) US Army casualties in western Europe
during World War II, and (3) historical trends in US defense
spending.

As an example of chaos on the strategic level, consider figure 8,
which shows a time-series plot of US aircraft losses in Vietnam. Is
this just pseudo-random statistical fluctuation, or is it due in part
to an underlying deterministic chaotic process? 

Figure 8. Time dependence of US aircraft losses in Vietnam [61]

One way to test for deterministic chaos is to look for the
convergence of the estimated correlation dimension with
increasing embedding dimension, shown in figure 9. 

Figure 9. Estimated fractal dimension for weekly US aircraft losses in
Vietnam (as a whole and in the air) [61]

Recall that, loosely speaking, the fractal dimension of a set
specifies the minimum number of variables that are needed to
specify the set.16 Recall also that the embedding dimension is the

16 See Part I [28], pages 50-54.
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dimension of the space in which the set of points making up the
original time series (figure 8) is embedded.17 One essentially
constructs d-dimensional data vectors from d points spaced
equally in time and determines the correlation dimension of this
d-dimensional point set. Since the set of data points making up
the time-series consists of 443 points, the data points a-priori
represent a 443-dimensional space. If the original data consisted
of truly random points, then, as the embedding dimension is
increased the calculated correlation dimension should also
increase proportionately. The fact that the plot of fractal
dimension versus embedding dimension seems to be converging
as the embedding dimension increases suggests strongly that
despite appearances, the irregular appearing time-series data
shown in figure 8 is not random but is due to a deterministic
chaotic process.

Evidence of Self-Organized Criticality From Historical Data?

Recall that self-organized criticality is the idea that dynamical
systems with many degrees of freedom naturally self-organize into
a critical state in which the same events that brought that critical
state into being can occur in all sizes, with the sizes being
distributed according to a power-law.18 Introduced in 1988, SOC
is arguably the only existing holistic mathematical theory of
self-organization in complex systems, describing the behavior of
many real systems in physics, biology and economics. It is also a
universal theory in that it predicts that the global properties of
complex systems are independent of the microscopic details of
their structure, and is therefore consistent with the "the whole is
greater than the sum of its parts" approach to complex systems.

Combat Casualties

Is war, as suggested by Bak and Chen,19 perhaps a self-organized
critical system? A simple way to test for self-organized criticality is
to look for the appearance of any characteristic power-law
distributions in a system's properties. Richardson [51] and
Dockery and Woodcock [18] have examined historical land
combat attrition data and have both reported the characteristic
linear power-law scaling expected of self-organized critical
systems. Richardson examined the relationship between the

17 See Part I [28], page 49.
18 See Part I [28], pages 101-107.
19 P. Bak and K. Chen, "Self-Organized Criticality," Scientific American,
Volume 26, January 1991, 46-53.
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frequency of "deadly quarrels" versus fatalities per deadly quarrel
using data from wars ranging from 1820 to 1945. Dockery and
Woodcock used casualty data for military operations on the
western front after Normandy in World War II and found that
the log of the number of battles with casualties greater than a
given number C also scales linearly with log(C); see figure 10. 

Figure 10. Analysis of WWII casualty data on the western front after
Normandy (Dockery and Woodcock, [18])

The paucity of historical data, however, coupled with the still
controversial notions of self-organized criticality itself, makes it
difficult to say whether these suggestive findings are indeed
pointing to something deep that underlies all combat or are
merely "interesting" but capture little real substance. Even if the
results quoted above do capture something fundamental, they
apply only to a set of many battles. The problems of determining
whether, or to what extent, a power-law scaling applies to an
individual battle or to a small series of battles, and -- perhaps
most importantly -- what tactically useful information can de
derived from the fact that power-law scaling exists at all, remain
open.

Message Traffic

Woodcock and Dockery [18] also examine message traffic delays
using data collected as part of a military exercise; see figure 11.
They find that the number of messages that arrive after a given
time delay again follows a linear power-law scaling expected of
self-organized critical systems. The authors comment that
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"The conditional expectation of further delay after waiting a given period
actually increases in proportion to the time already waited. Compare this
property with the more usual assumption of the Poisson distribution that the
delay is independent of the time already waited. The fractal distribution is
thus much more in accord with the maxim that 'the worse things get, the
more worse they can get.' For the operational commander, the consequence
of the hyperbolic fit is that self-initiated action is probably called for after a
suitable delay. For the message traffic system designer the implication of the
power law fit is to make messages, which are long delayed, candidate for
deletion."

Figure 11. Log-log plot of message delay in 2.5 minute time bins [18]

Use of Complex Systems Inspired Measures to Describe
Combat

Part I of this report [28] provides a detailed discussion of several
useful qualitative and quantitative characterizations of chaos.
Qualitative characterizations include time-plots of the behavior
of pertinent variables, Poincare plots, autocorrelation functions and
power spectra. Quantitative characterizations include Lyapunov
exponents, generalized fractal dimensions (including fractal,
correlation and information dimensions), and Kolmogorov-Sinai
entropy. A recently introduced idea is to use casualty-based
entropy as a predictor of combat. 

Casualty-Based Entropy

Carvalho-Rodriques [13] has recently suggested using entropy, as
computed from casualty reports, as a predictor of combat
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outcomes. Whether or not combat can be described as a complex
adaptive system, it may still be possible to describe it as a
dissipative dynamical system (see Part I [28], page 28). As such, it
is not unreasonable to expect entropy, and/or entropy
production, to act as a predictor of combat evolution.
Carvalho-Rodriques defines his casualty-based entropy E by

E i = Ci

Ni
log 1

Ci/Ni
,

where Ci represents the casualty count, in absolute numbers) and
Ni represents the force strength of the ith adversary (either red
or blue). It is understood that both Ci and Ni can be functions of
time. 

Figure 12 shows a plot of the functional form E(x) = x log (1/x),
where x = Ci /Ni. Notice that the curve is asymmetrical and has a
peak at about 0.37. One could interpret this to mean that once Ci

/Ni goes beyond the peak, "it is as if the combat capability of the
system ... declines, signifying disintegration of the system itself."20

Figure 12. A plot of entropy E(x) = x log (1/x)

Woodcock and Dockery [18] provide strong evidence that
casualty-based entropy  is a useful predictor of combat. They base
this on analysis on both time-independent and time-dependent
combat data derived from detailed historical descriptions of 601
battles from circa 1600 to 1970, exercise training-data obtained
from the National Training Center and historical records of the
West-Wall campaign in World-War II and Inchon campaign
during the Korean war. 

20 Reference [18], page 197.
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They find that plots of Ea (attacker entropy) versus Ed (defender
entropy) are particularly useful for illustrating the overall combat
process (see figure 13): 

Region I: a low entropy region corresponding to low
casualties and ambiguous outcomes. Initial phases of a
battle pass through this region, with the eventual success or
failure for a given side depending on the details of the
trajectory in this entropic space

Region II: a region of high entropy for the defender and low
entropy for the attacker indicates the attacker wins

Region III: a region of ambiguous outcomes, like region I,
region III represents high attrition with outcomes
depending on the direction of the trajectory. (Woodcock
and Dockery indicate that only simulated combat appears
able to reach this region.21)

Region IV: an analogue of region II, where the entropy roles
are reversed and the defender wins.

Figure 13. Regions of casualty-based entropy phase space [18]
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Woodcock and Dockery  further suggest that the measurement
and display of coupled casualty and reinforcement rates may be a
first step towards quantifying the battle tempo. "The tempo is then
seen to characterize, not the physical rate of advance (the usual
21 Reference [18], page 223.
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connection), but rather the rate of structural breakdown of the
fighting force."22

We note, in closing, that Carvalho-Rodriques's definition of a
casualty-based entropy is but one possible definition. One could
alternatively use generalizations of the Renyi-entropy,
Kolmogorov-Sinai entropy, or topological entropy, among many
other definitions. Despite the seeming simplicity of the basic
idea, there is strong evidence to suggest that  entropy will play a
fundamental role in understanding the underlying dynamical
processes of war.

Use of Relativistic Information to Describe Command and
Control Processes

Relativistic information theory is a concept introduced by
Jumarie [29] and has been suggested as a possible formalism for
describing certain aspects of military command and control
processes by Woodcock and Dockery [18]. Relativistic
information may prove to be particularly useful for gaining
insight into the interplay among combat, command and control
and information.

Generalized entropy is an entropy that is endowed with four
components, so that it is equivalent to a four-vector and may be
transformed by a Lorentz transformation (as in relativity theory).
These four components consists of: 

1. external entropy of the environment (Ho), which can be
associated with operational and intelligence information

2. internal entropy of the system (Hi), which can be associated
with the readiness of forces information

3. system goals, which can be equated with missing (and
planning) information

4. internal transformation potential, which measures the
efficiency of the system's internal information
transformation; this can be associated with a measure of
the command and control capability information

22 Reference [18], page 227.
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An additional factor, called organizability, plays the role of
"velocity." Woodcock and Dockery show that it is possible to use
relativistic information theory to compare the relative command
and control system response of two command structures to the
world around them. The quantity of interest is dHi/dHo, or the
rate of change of the internal information environment with
respect to changes in the surrounding environment.

"Using relativistic information theory it is possible to compare the relative
command and control system response of two commanders to the world
around them. Their relative perceptions of the change about them is
theoretically quantified by relativistic information theory. Because the theory
measures changes with respect to the environmental change, we can argue
that self-organization is a requirement for a military force. If the internal
structure cannot cope with the change in the environment that structure must
itself change. The goal of combat must paradoxically be to create a
self-organizing structure which nonetheless ensures the destruction of the
foes' internal structure."23

23 Reference [18], page 536.
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Tier V: Combat Technology Enhancement

Tier V consists of applying complex systems theory tools to
enhance existing combat technologies. This "workhorse" tier is
concerned with using specific methods to improve, or provide
better methods for applying, specific key technologies. Examples
include using computer viruses (a form of "artificial life") as
computer countermeasure agents, applying iterated function
systems (i.e. fractals) to image compression for data
dissemination, using cellular automata for cryptography, using
genetic algorithms for intelligent manufacturing, using
synchronized chaotic circuits to enhance IFF capability, and
"fire-ant" technology.

Computer viruses ("computer counter-measures")

A computer virus can be thought of as an autonomous agent. It is
a computer program that tries to fulfill a goal or set of goals
without the intervention of a human operator. Typically, of
course, viruses have rather simple and sinister goals of tampering
with the normal operation of a computer system and/or
computer network and then reproducing in order to spread
copies of themselves to other computers. Computer viruses are
particularly interesting to artificial life researchers because they
share many of the properties of biological viruses.

From a military standpoint, computer viruses can be used in two
ways: (1) as computer countermeasure agents to infiltrate enemy
systems, or (2) as constructive "cyberspace allies" that, for
example, can be programmed to maintain the integrity of large
databases.

Fractal Image Compression

A powerful technique for image compression that is based on
fractals -- called Iterated Function Systems (IFS) -- has been
developed by Barnsley and his co-workers at the Georgia Institute
of Technology [4]-[5]. To appreciate the need for compressing
images, consider a typical grey-scale intelligence photograph that
need to be disseminated to interested parties. Suppose there are
256 shades of grey and that the image must be scanned and
converted into a 1024-by-1024 pixel digitized image. The
resulting image can be recorded using a binary string of
1024-by-1024-by-8 binary bits of information. Thus, without
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compression, one must use close to 10 million bytes of memory
to store the image. Image compression involves reducing the
required number of bytes to store an image, and can be either
"lossless," so that the original image can be recovered exactly,
and "lossy," so that only an approximate version of the image can
be retrieved. 

There are, of course, tradeoffs involved among how well the
original image can be recovered, what the maximum possible
compression rate is, and how fast the actual compression
algorithm can be run. Generally speaking, the greater the
desired compression, the more CPU-time is required and the
greater the risk of some compression loss. Conventional lossy
compression schemes, such as Discrete Sin and Cos Transforms,
can achieve compression ratios ranging from 2:1 to 10:1,
depending on the image. In comparison, while IFS is generally
lossy (so that an original image cannot generally be recovered
from the compressed image exactly), it is able to achieve
extremely high compression ratios, approaching 50:1, 300:1 or
better. Microsoft has, in fact, licensed use of this technology to
compress images found on its CD-ROM encyclopedia Encarta.

The basic idea of IFS is simple to state, though often
time-consuming to apply without special hardware. An image is
compressed by exploiting the innate self-similarity, or
redundancy, contained in an image. Recall that fractals are,
loosely speaking, objects that consist of an endless succession of
smaller versions of themselves, at all levels. 

IFS uses affine transformations to build a "collage" of an image
using smaller copies of the image. An affine transformation is an
operation on a set of points that distorts that set by scaling,
shifting, rotating and/or skewing. The IFS process involves
finding smaller, distorted copies of an image and putting them
together in a "collage" that approximately reproduces the
original image. Each distorted copy of the image represents a
different affine transformation. Once a collage is formed, the
original image can be thrown away. The original image can be
recovered by applying the appropriate set of affine
transformations to some starting "seed" coordinate and iterating.
The trajectory of the points will converge onto an attractor that
defines the image. For example, figure 14 shows a "recovered"
image of a fern using the affine transformation defined by (x,y)
--> (s1 x cos r1 - s2y sin r2 + t1, s1 x sin r1 + s2y cos  r2 + t2), where the
parameters  r1, r2, s1, s2, t1 and t2 are shown in table 7. 
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Table 7. Rotation (r1, r2), scaling ( s1, s2) and translation (t1, t2)
parameters defining the IFS affine transformation of a fern

Affine
Transformation r1 r2 s1 s2 t1 t2

1 0 0 0 0.16 0 0

2 -2.5 -2.5 0.85 0.85 0 1.6

3 49 49 0.3 0.34 0 1.6

4 120 -50 0.3 0.37 0 0.44

Consider what this fern represents. A high resolution digitized
image of the original grey-scale image takes up more than a
megabyte of memory, Conventional compression schemes might
reduce this by a factor of five. But IFS has reduced the image to
essentially 28 parameters.

Figure 14. An IFS encoded fern using the affine transformation
defined in table 7

Of course, not all objects in nature have the manifest
self-similarity of a fern. The trick is to find the right group of
affine transformations for generating a given image. That a set of
affine transformations can be found in general, even for objects
that do not exhibit a manifest self-similarity is due to a theorem
called the Collage Theorem. The collage theorem asserts that given
a target image S and a measure of closeness ε, a set of IFS affine
transformations f can be found such that the "distance"
(appropriately measured) between S and f(S) (which is the
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union of scaled copies of S, called the "collage" of S) is less than ε
[5].

Applications of IFS compression are wide-ranging and
far-reaching. They include more efficient transmission of fax, still
imagery and video, more efficient computer data storage and
retrieval, and image recognition. There are of course many more
details to IFS than there is room to discuss in this paper. An
excellent reference is Barnsley's book [5]. His company, Iterated
Functions, also has an extensive collection of articles and software
demos on the WWW at http://www.iterated.com.

Cryptography

In succinct terms, an ideal cryptographic encryption scheme is an
operation on a message that renders that message completely
meaningless to anyone who does not possess a decryption key,
and, at the same time, preserves and reveals the original message
exactly to anyone who possess the key. Ideally, the operation is
encrypts quickly and decrypts quickly.

All practical cryptographic schemes, of course, are less than
ideal, typically because their encryption schemes are less than
foolproof  (Denning, [16]). Most depend on the presumed
computational difficulty of factoring large prime numbers. The
effective measure of worth of any cryptographic scheme remains
the test of time: the longer a given system is in widespread open
use by trained intelligent cryptoanalysts without being "broken,"
the better the system.

It would take us too far afield of the main subject of this report to
go into any great detail about cryptoanalysis. We will only briefly
mention some attempts that have been to develop cryptosystems
based on nonlinear dynamical system theory and cellular
automata (See Part I [28], pages 81-88). We follow mainly
Gutowitz ([24]).

The basic idea is to use a nonlinear dynamical system that is
known to exhibit deterministic chaos and use it to evolve some
initial starting point to some future state. After a certain time has
been allowed to elapse, the initial state -- which is defined to be
the public key -- is effectively "forgotten." Because the dynamics is
assumed to be strictly deterministic, however, the same initial
state always leads to the same final state after a specified number
of time steps. Users can thus send messages to one another
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encoded in some way using some part of the evolved trajectory
traced out by the secret initial state. Anyone who does not possess
the initial state will not be able to reproduce the trajectory and
thus will not be able to decipher the message. 

Bianco and Reed [9] have patented an encryption scheme using
the logistic equation as the underlying dynamical system. A
drawback to this scheme, however, is that the sequences
generated by the logistic map are not truly random, so that an
appropriate statistical analysis could identify embedded patterns
that could then be exploited to decipher a message. Wolfram
[68] suggests a discrete dynamical system version of the basic
idea that uses the iteration of a cellular automaton to generate a
bit string. The cellular automaton chosen (shown in figure 20 on
page 84 in Part I [28]) is known as rule 30. What is interesting
about this rule is that the temporal sequence of vertical values of
its evolving space-time pattern has been shown to satisfy all
known tests of randomness. As for the case of a continuous
dynamical system, the secret key is the initial state of the cellular
automaton system, and a message can be encrypted and
decrypted by combining it with the temporal sequences of a
given length generated by the rule. Gutowitz [24] has also
introduced a much more powerful and sophisticated algorithm
based on a cellular automaton model.
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Tier VI: Combat Aids

Tier VI consists of using the tools of complex systems theory to
enhance real-world operations. Examples include using genetic
algorithms to "evolve" strategy and/or tactics, developing tactical
picture agents to adaptively filter and integrate information in
real-time, and developing autonomous robotic devices to act as
sentries and data collectors. 

As has been discussed elsewhere (see Part I, pages 93-101),
genetic algorithms are powerful heuristic tools for finding
near-optimal solutions for general combinatorial optimization
search problems. One obvious application of genetic algorithms
that has found a comfortable home in the artificial life research
community, involves their use as sources of the "adaptive
intelligence" of adaptive autonomous agents in an agent-based
simulation. A related application that is of particular interest to
the military strategist, theorist and/or battlefield commander, is
that of direct strategy and/or tactics development.

Figure 15 shows a schematic representation of what might be
called a "strategy landscape." The strategy landscape represents
the space of all possible global strategies that can be followed in a
given context or scenario. Generally speaking, a
genetic-algorithm-based tactics- or strategy- "optimizer" consists
of an evolutionary search of this landscape for high-pay-off
strategies using whatever local information is available to
individual combatants. The shape of the landscape is determined
by the fitness measure that is assigned to various tactics and/or
strategies. It also changes dynamically in time, as it responds to
the actual search path that is being traversed.

Figure 15. Schematic representation of a strategy landscape
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Using Genetic Algorithms to Evolve Tank Strategies

Carter, Dean, Pollatz, et. al, [12] suggest using genetic algorithms
to "evolve" strategies for the battlefield. While their ultimate goal
is to develop a complete architecture for intelligent virtual agents
that employ multiple learning strategies, their initial testbed
consists of evolving reasoning-strategies for what they call smart
tanks. While this testbed is deliberately designed to be as simple
as possible, because it involves many of the key elements that
make up more realistic models, it is of considerable pedagogical
value. For this reason, we discuss the smart-tank testbed briefly
below.

Smart tanks live on a simple two-dimensional "battlefield"
containing a randomly placed "black-hole" (see figure 16). The
black-hole represents a lethal area of the battlefield that
annihilates any smart tank that encounters it. Smart tanks,
generated on one side of the battlefield, must cross over to the
other side without encountering the black-hole if they are to be
successful and "live." A tank's route is determined by its genotype
(see below).

A smart tank is an artificial organism that consists of three basic
components: (1) memory, which is a record of the decisions and
fates of three previous smart tanks that have successfully crossed
the battlefield, (2) reasoning, which is the internal mechanism by
which a tank selects one of several viable strategies, and (3)
instinct, which is a basic inference engine common to all tanks,
and is included to simulate the basic behaviors that may occur in
life threatening or otherwise critical situations. How much weight
a given tank assigns to each component -- that is, what overall
reasoning strategy it chooses to follow -- depends on its genetic
predisposition. 

Smart-tank strategies "evolve" in the following way. First, a
population of smart tanks is created. One tank is selected out of
this population and crosses the battlefield. It looks ahead a
certain number of discrete bins into which the battlefield is
decomposed, and gathers information on the destination bin.
The exact number of bins that it looks ahead at depends on the
tank and its current reasoning strategy. The tank then selects a
reasoning strategy upon which to base its next move. After
arriving at the destination square this same process repeats itself.
If, at any time, the tank encounters a black-hole, it dies and its
genetic structure is lost (though a record of it is maintained in a
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global case-base). If the tank survives -- i.e. never encounters -- the
black-hole, its genes are saved in a "winner's circle." A genetic
algorithm then combines the genes in the winner's circle to form
a new population of tanks.

Figure 16. Schematic representation of a genetic-algorithm based
"smart tank"

Tank

Goal

black-hole

1    0    1    1   1    0    0    1   0     1   1    0    0    1   0

(Tank's chromosome)

Carter, et. al.'s initial testbed was designed to use genetic
algorithms as a mechanism for creating coordination schemes for
three specific learning strategies:

Case-based Reasoning. This strategy consists of using
whatever reasoning was the best approach for an identical,
or almost identical, situation encountered in the past.
Carter, et. al.'s actual implementation involved tacking a
history of up to 256 previous tank traversals of a 10-by-10
bin battlefield, with a maximum of three histories being
accessible by any one tank. The case-based reasoning
strategy compares the three histories and selects the closest
fit. The suggested move is assigned a confidence level
commensurate with the closeness of fit.

Rule-based Reasoning. This strategy consists of using the
current information about the local surroundings and
determining what rule, out of the current rule set, is best
applicable. Rules are of the form "go to bin nearest goal,"
or "go to bin requiring least amount of energy to get to,"
and so on. The rule-base also takes into account how well
rules have performed in the past.
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Instinct. This strategy consists of using one of a set of
generic responses. Moves are based on prior determined
moves for a given bit pattern in a tank's chromosome. A
typical move might consist of going to the adjacent bin that
exerts the least amount of pull toward the black-hole (a
black-hole's "attraction" for tanks diminishes with distance
from black-hole, but its effects are felt in many surrounding
bins).

No one of these individual reasoning strategies, of course,
perhaps equally as well in all situations. Indeed, one of the main
reasons for developing this testbed example was to explore the
efficacy of various options and to allow the genetic algorithm to
suggest the right "mix" of strategies.

Smart-Tank's Chromosome

A smart tank's actual chromosome consists of 35 genes. We
should immediately emphasize that as is true of almost all other
features of this simple testbed, there is nothing sacrosanct about
having 35 genes. One could choose to have a greater or lesser
number of genes, and to interpret the genes in a different
manner from that outlined below. The testbed is here presented
in detail for illustrative purposes only, and to suggest only one of
many equally as valid approaches that could be used to design a
genetic algorithm scheme for evolving strategies for the
battlefield. 

The functions of a smart tank's 35 binary-valued genes (i.e. each
gene takes on either the value 0 or 1) are broken down as
follows: 

Bits 1 - 8: pointer to the first of 3 accessible histories of
previous tank traversals (out of a maximum of 256 stored
histories; see "Case-based reasoning" above)

Bits 9 - 16: pointer to the second of 3 accessible histories of
previous tank traversals

Bits 17 - 24: pointer to the second of 3 accessible histories of
previous tank traversals

Bits 25 - 29: tank characteristics (2 bits for sensitivity, 1 bit for
speed, and 2 bits for type and range of look ahead)
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Bits 30 - 32: type of reasoning (the 3 bits specify 9 3-bit
patterns ranging from 100% rule-based for pattern 111 to
50% rule-based and 50% case-based for pattern 100 to 33%
rule-based, 33% case-based and 34 % instincts for pattern
011).

Bits 33 - 35: generic instincts (the 3 bits again specifying 9
possible 3-bit patterns that range from "tank heads toward
the goal regardless of forces in the environment" for
pattern 000 to "tank moves to square in front of it that has
the least force in it" for pattern 010, and so on)

As mentioned above, a greater or fewer number of genes could
have been chosen, and all or some of their interpretations
altered. What it is hoped the reader will take away from this
description of a simple testbed is the general approach to
building a genetic algorithm based "strategy evolver."

Tactical Decision Aids

Virr, Fairley and Yates [65] have suggested using a genetic
algorithm as an integral component of what they call an
Automated Decision Support System (ADSS).

There are three main phases to any decision making process:

1. Data Fusion: wherein all of the available information is
assembled to form a tactical picture of a given situation

2. Situational Assessment: wherein various pertinent aspects of
the tactical picture are appraised

3. Decision: wherein the appropriate action, or set of actions,
is actually selected

The tactical plan, from which a specific set of
condition-contingent actions is selected, can be expressed, in its
simplest form, as a sequence of IF-THEN rules of the form

    .....
Rule Rn-1

Rule Rn:
IF(condition1 AND condition2 AND ... AND conditionN)
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   THEN(action1 AND action2 AND ... AND actionM)
Rule Rn+1

    .....

Here, condition ni refers to the ith piece of information
assimilated during the data fusion phase (such as speed of target,
bearing, etc.) and actionj refers to the jth action that is to be taken
(such as turn toward target, engage target, and so on). 

A Plan P, consisting of a set of rules {R1,...,RP}, forms the rule-base
of a Knowledge Based System (KBS) for a given tactical situation.
Once specified, it can be used for training purposes, to model
tactical decisions made by an adversary in simulated combat
and/or as a real-time tactical decision aid on the battlefield. The
problem, of course, is how to construct P.

Traditionally, P has been constructed by a knowledge engineer;
that is, someone who painstakingly elicits from experts the facts
and heuristics used by those experts to solve a certain set of
problems. Of course, there are two obvious problems with this
traditional approach: (1) an expert may not always be able to
successfully articulate all of the relevant knowledge required for
solving a problem, and (2) there may be enough of a mismatch
between the concepts and vocabulary as used by an expert and a
knowledge-engineer that though an expert may correctly
articulate the relevant knowledge, the knowledge engineer is
unable to render that knowledge meaningful within the
IF-THEN rule structure of the plan. 

One way of circumventing both of these problems -- called
Machine Learning (ML) -- is to have the KBS "discover" the
required knowledge, and thereby construct the plan P, by itself.
Although there are many different techniques that all go under
the rubric of ML, they all fall into one of four major categories:

Analytic Learning. Analytic learning systems require a
thorough understanding of the general underlying
problem type and must have available a large number of
problem-solution exemplars. The technique relies on
adapting solutions to problems that it identifies as being
"close to" known solutions to known problems.

Inductive Learning. Inductive learning requires an external
"teacher" to produce problem samples. The teacher grades
the system's attempts to use its stored knowledge to try to
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solve each problem in turn. The teacher's grade is then
used to update the system's knowledge. 

Neural Network Learning. The neural net (also called the
Connectionist) approach consists of applying a learning
algorithm (such as back-propagation) to adjust a set of
internal weights in order to minimize the "distance"
between calculated and desired solutions to selected
problems. Given a set of training problem-solution
exemplars, the learning algorithm produces a network that,
in time, is able to correctly recognize the pattern implicit in
all input (i.e. problem) and output (i.e. solution) pairs.

Genetic Algorithm (or Selectionist) Learning. Selectionist
learning systems exploit the learning capability of a genetic
algorithm to "evolve" an appropriate knowledge base.
Recall that genetic algorithms are a class of heuristic search
methods and computational models of adaptation and
evolution that mimic and exploit the genetic dynamics
underlying natural selection. 

Given the basic differences among these four approaches, it is
clear that, in general, not all approaches can be expected to be
equally appropriate for solving a given kind of problem.
Depending on the problem, each approach offers certain unique
advantages and disadvantages. 

When it comes to the general problem of tactical decision
making, a strong case can be made that selectionist learning
techniques are the most appropriate. First, there is no complete
"domain theory" describing all possible conflicts and scenarios
on which to base a general strategy of conflict resolution. This
makes it hard to use an analytical learning technique. Second,
whatever real-world expertise there is to assist in building a KBS
must, of necessity, be both incomplete (because only a small
fraction of all possible scenarios can be experienced) and
imprecise (because all human experience is fundamentally
subjective). Thus, both inductive and connectionist learning
techniques, both of which depend critically on having sets of
carefully pre-constructed scenario-plan exemplars available for
learning, would be difficult to use for this problem. Finally, and
most importantly, any tactical plan must be able to continually
adapt to changing, and often unanticipated, facts and scenarios.
Genetic algorithms, of course, are designed to deal with precisely
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this kind of open-ended and "changing" problem, as they are
particularly adept at discovering new rules. 

Now, how specifically can genetic algorithms be used to generate
new tactics? The answer depends on how genetic algorithms are
incorporated within the parts of a larger class of Classifier System.

Classifier Systems

Classifier systems were introduced by John Holland as an attempt
to apply genetic algorithms to cognitive tasks. A classifier system
typically consists of (1) a set of detectors (or input devices) that
provide information to the system about the state of the external
environment, (2) a set of effectors (or output devices) that
transmit the classifier's conclusions to the external environment,
 (3) a set of rules (or classifiers), consisting of a condition and
action, and (4) a list of messages.  

Rules are the actual classifiers, and are grouped together to form
the classifier's rule-base. Associated with each classifier is a
classifier-weight, representing the degree of usefulness of that
particular classifier in a given environment. Messages constitute
the classifier system's basic means of exchanging information,
both internally and at the interface between classifier system and
external world.

Although the operation of a real classifier system can be quite
complex, their basic operation consists of the following general
steps: Information from the world model is first communicated
to the classifier at the input interface. The classifier combines
this information with rules stored in its rule-base to select an
appropriate action, which is, in turn, effected at the output
interface, updating the world model. Learning takes place via
credit assignment, wherein rules are judged "good" or "bad" in
order to teach the system what actions are appropriate in what
contexts. The genetic algorithm comes in as the part of the
classifier system responsible for deciding how "old" rules in the
rule-base are replaced by "new" rules. 

How can Genetic Algorithms be Used?

Recall that genetic algorithms process a population of
"solution-organisms" according to their relative "fitness" (i.e. a
figure of merit ostensibly measuring an organism's ability to solve
a given problem) so that, over time, as the population evolves,
there is an increasing likelihood that some members of the
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population are able to "solve" the given problem well (or well
enough).  In the present context, the "problem" is to find new
and/or improved rules for a tactical decision knowledge base.
The meta-problem, from the point of view of the genetic
algorithm, is how to go about ascribing a "fitness" to members of
the rule-population. Without a fitness, of course, there is no way
for the population to evolve.

Virr, et. al. [65] suggest four ways in which a genetic algorithm
can be grafted into a classifier system to effectively breed rules:

1. Apply Genetic Algorithm at the Rule Level. Suppose we take a
"population" to consist of rules making up a particular
plan. A genetic algorithm can then use the individual
rule-strengths as fitnesses guiding their evolution. The
major drawback to this approach is that since all of the
rules are independent, the genetic algorithm degenerates
into a search for a "super-rule" that deals with all
situations (which, for typical real problems, does not
exist). There are ways, however, of inducing rules to
cooperatively link with one another, partially
circumventing the drawback to this approach.

2. Apply Genetic Algorithm at the Plan Level. An alternative is to
use a genetic algorithm on a population of plans rather
than on a population of rules making up a given plan.
Drawbacks to this approach include (1) using a single
fitness measure (presumably derived from the fitnesses of
the individual rules) to represent the efficacy of an entire
plan, and (2) the need for an additional algorithm to
generate new rules in the various plans.

3. Apply Genetic Algorithm at the Sub-Plan Level. Suppose a plan
P is partitioned into q subsets, where 1 < q < R, R is the
number of rules in P, and the rules in each subset of the
partition are related in some way. Then the rules within a
each subset can be viewed as a population, and -- since
each rule has an associated rule-weight -- the population
can be subjected to a genetic algorithm. The efficacy of
the partitioning scheme itself may also be amenable to a
genetic algorithm.

4. Apply Genetic Algorithm at Both the Rule and Plan Levels. The
fourth approach attempts to capitalize on the advantages
of the first two approaches by carefully combining them.
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The idea is to associate one classifier with each plan, and
running the set of classifiers in parallel. The genetic
algorithm is then applied both at the rule level of each
classifier -- during which time the plans are allowed to
develop independently -- and at the plan level, during
times in which the operation of the individual classifier
systems is periodically suspended.

Tactical Picture Agents

Anyone who has spent even a small amount of time "surfing" the
World-Wide-Web for information can attest to how difficult it is
to find useful information. To be sure, the WWW is filled with
untold numbers of glossy pages overflowing with all kinds of
information. A quick use of a web search-engine such as Lycos24 or
AltaVista25 usually suffices to uncover some useful sites. But what
happens when one needs to find some information about a
particularly obscure subject area? And what happens when one
begins relying on one's web connection for more and more of
one's daily workload: e-mail, stock quotes, work scheduling,
selection of books, movies, travel arrangements, video
conferencing, and so on?

A powerful emerging idea that helps the human "web-surfer"
deal with this increasing workload and that is based in part on
the methodologies of autonomous agents and genetic
algorithms, is that of Intelligent Software Agents.26

Software agents are programs that essentially act as sophisticated
personal assistants. They act as intermediaries between the
interests of the user and the global information pool with which
the user has traditionally dealt directly. Software agents engage
the user in a cooperative process whereby the human operator
inputs interests and preferences and the agent monitors events,
performs tasks, and collects and collates useful information.
Because software agents come endowed with an adaptive
"intelligence," they become gradually more effective at their tasks
as they begin learning the interests, habits and preferences of the
user.

24 http://lycos.cs.cmu.edu/.
25 http://altavista.digital.com/.
26 See, for example, the collection of articles in Communications of the
ACM, Volume 37, No. 7, July 1994.
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How does this relate to a military combat environment?
Intelligent software agents can be used for adaptive information
filtering and integration and as Tactical Picture Agents, scouring and
ordering the amorphous flood of battlefield and intelligence
data.

ONR Initiative

The basic idea is rapidly nearing the development stage. As an
example of one application that is already in the embryonic stage
of development for the navy, the Office of Naval Research
(ONR) has recently released a public announcement soliciting
submission of research proposals for a 5-year research initiative
to develop intelligent tactical picture agents for naval
decision-makers.27 

Naval commanders must have access to, and have immediate use
of, the right information at the right time. They must assimilate
and understand all of the relevant information concerning their
own situation, including the disposition of the Red, Blue and
White forces, geographical, oceanographic and meteorological
characteristics of the surrounding vicinity, status of all weapon
systems, and so on. The totality of this information is called the
Tactical Picture.

At the present time, information is disseminated typically via
either naval text messages, ship-to-ship communications, radar
and sonar tracks, and so on. As technology improves, naval ships
and other platforms will have access to a wider range of
information, including immediate access to satellite images and
weather reports, on-line intelligence analyses, and perhaps even
direct connectivity to the world-wide-web or some similar globally
connected network. It therefore becomes vital to develop
intelligent software agent technologies that can automatically
perform the data-mining and filtering functions necessary to
make effective use of this potential explosion of information.

ONR's 5-year basic and exploratory research effort is designed to
foster the development of a tactical picture agent technology that
can eventually dramatically improve the on-board "tactical
picture building" ability of all naval platforms. ONR has spelled
out three basic objectives:

27 An HTML-formatted copy may be obtaind from the WWW URL
address http://jhuapl.edu/program/tpa/. Other information can be
obtained at http://www.itd.nrl.navy.mil/ONR/aci/tpahome.html.
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1. Modeling of users and tasks so that intelligent software
can decide what to search for and how to integrate search
results.

2. Development of intelligent software agents that can locate
and filter multi-media information appropriate for a
particular task and user.

3. Develop methods of displaying information that are
appropriate for a particular task and environment.

Exactly the same ideas apply to developing a tactical picture
agent for land combat. Diverse forms of information must be
assimilated, filtered, ordered and presented to the field
commander.

Autonomous Robotic Devices

Adaptive agent technology can be used to develop autonomous
robotic devices to act as sentries, to help in material
transportation and hazardous material handling.
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Tier VII: Synthetic Combat Environments

Tier VII consists of developing full system models for training
purposes and/or for use as research laboratories. Examples
include cellular-automata-based and multi-agent-based
simulations of combat (along the lines of commercial games like
SimCity), cognitive architecture driven simulations such as the
one found in Carnegie-Mellon University's SOAR/IFOR project,
and combat models based on the Santa Fe Institute's SWARM
general-purpose complex adaptive modeling system.

Combat simulation using cellular automata

If one abstracts the essentials of what happens on a battlefield,
ignoring the myriad layers of detail that are, of course, required
for a complete description, one sees that much of the activity
appears to involve the same kind of simple nearest-neighbor
interactions that define cellular automata (see Part I, page 81).
Woodcock, Cobb and Dockery [18] in fact show that highly
elaborate patterns of military force-like behavior can be
generated with a small set of cellular automaton-like rules.

In Woodcock, et. al.'s model, each combatant -- or automaton -- is
endowed with a set of rules with which it can perform certain
tasks. Rules are of four basic varieties:

Situation Assessment, such as the determination of whether a
given automaton is surrounded by friendly or enemy forces

Movement, to define when and how a given automaton can
move; certain kinds of movement can only be initiated by
threshold and/or constraint criteria

Combat, which governs the nature of the interaction
between opposing force automata; a typical rule might be
for one automaton to "aim fire" at another automaton
located within some specified fight radius

Hierarchical Control, in which a three-level command
hierarchy is established; each lower-level echelon element
keys on those in the next higher echelon on each time step
of the evolution
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These basic rules can then be augmented by additional rules to
(1) simulate the impact that terrain barriers such as rivers and
mountains have on the movement of military forces; (2) provide
a capability for forces to respond to changing combat conditions
(for example, a reallocation of firepower among three types of
weapons: aimed firepower, area firepower and smart weapons
firepower), and (3) replace entities lost through combat
attrition. Figure 17 shows a schematic of three sample rules. A
further extension involves relating notional features of battlefield
geometry to the structure of real battlefields [18].

Figure 17. Three sample rules in Woodcock, et. al.'s CA combat
model

 three neighbors:                  one-neighbor: 
       advance                                retreat

"grey" attempts to
     shoot "black"

"black" attempts to
     shoot "grey"

Woodcock, et. al. stress that the goal of CA-based model of
combat is not to codify a body of rules that comes as close as
possible to the actual behavioral rules obeyed by real combatants;
rather, the goal lies in "finding the simplest body of rules that
both can generate nontrivial global combat-like phenomena and
provide a new understanding of the combat process itself by
extracting the maximum amount of behavioral complexity from
the least complicated set of rules." [18] Additional details are
discussed in chapters 3.1 and 3.2 of reference [18].

Agent-based simulations

For many obvious reasons, the most natural application of
complexity theory to land warfare is to provide an agent-based
simulation of combat. The basic idea is to model land combat as a
co-evolving ecology of local-rule-based autonomous adaptive
agents.

An Irreducible Semi-Autonomous Adaptive Combat Agent
(ISAACA) represents a primitive combat unit (infantryman, tank,
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transport vehicle, etc.) that is equipped with the following
characteristics (see figure 18):

a default local rule set specifying how to act in a generic
environment (i.e. an embedded "doctrine")

goals directing behavior ("mission")

sensors generating an internal map of environment
("situational awareness")

an internal adaptive mechanism to alter behavior and/or
rules; adaptation is genetic-algorithm-based (see page 93) --  
each ISAACA effectively plays out a scenario using a
genetically-encoded set of possible tactics; where fitness is
the expected payoff with respect to some internal value
system

An ISAACA collective, represented schematically in figure 39,
consists of local and global commanders, each with their own
command radii, and obeys an evolving C2 hierarchy of rules. A
global rule set determines combat attrition and reinforcement.
Nonlinear feedback exists among combatants (measure -->
countermeasure --> countercountermeasure --> ...) and between
combatants and the environment.

Figure 18. Field-of-view of a single ISAACA

Note that this approach is similar in spirit to a cellular automaton
(CA)  model (see Part I, page 81) but augments the conventional
CA framework in three ways: (1) evolution proceeds not
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according to a fixed set of rules, but to a set of rules that
adaptively evolves over time; (2) individual states of cells (or
combatants) do not just respond to local information, but are
capable of non-local information (via an embedded C2 topology)
and command hierarchy; and (3) global rule (i.e. command)
strategies are evolved via a genetic algorithm (orders pumped
down echelon are based on evolved strategies played out on
possible imprecise mental maps of local and/or global
commanders).

Insofar as complex adaptive systems can be regarded as being
essentially open-ended problem-solvers, their lifeblood consists
mostly of novelty. The ability of a complex adaptive system to
survive and evolve in a constantly changing environment is
determined by its ability to continually find -- either by chance, or
experience, or more typically both -- insightful new strategies to
increase its overall "fitness" (which is, of course, a constantly
changing function in time).

Military campaigns likewise depend on the creative leadership of
their commanders, success or failure often hinging either on the
brilliant tactic conceived in the heat of combat or the mediocre
one issued in its place.

To be realistic, such novelty must not consist solely of a randomly
selected option from a main-options list -- which is a common
approach taken by conventional warfare models -- but must at
least have the possibility of being as genuinely unanticipated in
the model as it often is on a real battlefield. To this end, each
command-agent (and to a somewhat more limited extent, each
ISAACA) must possess both a memory and an internal
anticipatory mechanism which it uses to select the optimal tactic
and/or strategy from among a set of predicted outcomes. This is
an important point: except for doctrine and the historical lessons
of warfare, the super-set of tactics must not be hard-wired in.

Such local rule-based agent--simulations are well suited for

studying the general efficacy of combat doctrine and tactics

exploring emergent properties and/or other "novel"
behaviors arising from low-level rules (even doctrine if it is
well encoded28)

28 It is an intriguing speculation that doctrine as a whole may contain
both desirable and undesirable latent patterns that emerge only when allowed
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capturing universal patterns of combat behavior by focusing
on a reduced set of critical drivers

suggesting likelihood of possible outcomes as a function of
initial conditions

use as training tools along the lines of some commercially
available agent-based "games" such as SimCity, SimFarm
and SimLife29

providing near-real-time tactical decision aids by providing
a "natural selection" (via genetic algorithms; see Part I [28],
page 93) of superior tactics and/or strategies for a given
combat situation

giving an intuitive "feel" for how and/or why unanticipated
events occur on the battlefield, and to what extent the
overall process is shaped by such events

Figure 19. Schematic representation of a ISAACA simulation

Ideally, one would hope to find universal patterns of behavior
and/or tactics and strategies  that are independent of the details
of the makeup of individual ISAACAs. 

to "flow" through a system of elementary agents. An agent-based model of
combat may provide an ideal simulation environment in which to explore
such possibilities.
29 W. Wright, SimCity (computer game), Orinda, California: Maxis
Corporation, 1989.
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Agent-based simulations ought not be used either to predict real
battlefield outcomes or to provide a realistic simulation of
combat. While commercial networkable 3D virtual-reality games
such as DOOM30 are much better suited to providing a virtual
combat environment for training purposes, agent-based
simulations are designed to help understand the basic processes
that take place on the battlefield. It is not realism, for its own
sake, that agent-based simulations are after, but rather a realistic
understanding of the drivers (read: interactivity, decision-making
capability, adaptability, and so on) behind what is really
happening.

Swarm31

Swarm is a multi-agent simulation platform for the study of
complex adaptive systems. It is currently under development at
the Santa Fe Institute.32 

The goal of the Swarm project is to provide the complex systems
theory research community with a fully general-purpose
artificial-life simulator. The system comes with a variety of
generic artificial worlds populated with generic agents, a large
library of design and analysis tools and a "kernel" to drive the
actual simulation. These artificial worlds can vary widely, from
simple 2D worlds in which elementary agents move back and
forth to complex multi-dimensional "graphs" representing
multidimensional telecommunication networks in which agents
can trade messages and commodities, to models of real-world
ecologies.

Swarm has been intentionally designed to include as few ad-hoc
assumptions about the design of a complex system as possible, so
as to provide a convenient, reliable and standardized set of
software tools that can be tailored by researchers to specific
systems.  

Though the prototype has been written using the C
programming language, it is object-oriented in style. Future
30 Id Software, World-Wide Web URL link = http://www.idsoftware.com.
31 This section is based on the papers "An Overview of the Swarm
simulation systen," by '94 Swarm Team, Santa Fe Institute and "The SWARM
simulation system and individual-based modeling," by D. Hiebler.
32 Working papers and other documentation about the project can be
found at the SWARM site at the Santa Fe Institute: World-Wide-Web URL link
= http://www.santafe.edu/projects/swarm/.
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versions of Swarm will be implemented using the Objective-C
language. Objective-C is an object-oriented extension of the C
language that is widely available as part of the GNU C compiler,
and is available on the World-Wide-Web. 

Everything in Swarm is an object with three main characteristics:
Name, Data and Rules. An object's Name consists of an ID that is
used to send messages to the object, a type and a module name.
An object's Data consists of whatever local data (i.e. internal state
variables) the user wants an agent to possess. The Rules are
functions to handle any messages that are sent to the object. The
basic unit of Swarm is a "swarm": a collection of objects with a
schedule of event over those objects. Swarm also supplies the
user with an interface and analysis tools.

The most important objects in Swarm, from the standpoint of the
user, are agents, which are objects that are written by the user.
Agents represent the individual entities making up the model;
they may be ants, plants, stock brokers, or combatants on a
battlefield. Actions consist of a message to send, an agent or a
collection of agents to send the message, and a time to send that
message. Upon receiving a message, agents are free to do
whatever they wish in response to the message. A typical response
will consist of the execution of whatever code the user has written
to capture the low-level behavior of the system he is interested in.
Agents can also insert other actions into the schedule.

Three other properties of Swarm are noteworthy:

1. Hierarchy. In order to be better able to simulate the
hierarchical nature of many real-world complex systems,
in which agent behavior can itself be best described as
being the result of the collective behavior of some swarm
of constituent agents, Swarm is designed so that agents
can be themselves be swarms of other agents. Moreover,
Swarm is designed around a time hierarchy. Thus Swarm
is both a nested hierarchy of swarms and a nested
hierarchy of schedules.

2. Parallelism. Swarm has been designed to run efficiently on
parallel machine architectures. While messages within one
swarm schedule execute sequentially, different swarms can
execute their schedules in parallel. 
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3. Internal Agent Models. One can argue that agents in a real
complex adaptive system (such as the economy) behave
and adapt according to some internal model they have
constructed for themselves of what they believe their
environment is really like. Sometimes, if the environment
is simple, such models are fixed and simple; sometimes, if
the environment is complex, agents need to actively
construct hypothetical models and testing them against a
wide variety of assumptions about initial states and rules
and so forth. Swarm allows the user to use nested swarms
to allow agents to essentially create and manage entire
swarm structures which are themselves simulations of the
world in which the agents live. Thus agents can base their
behavior on their simulated picture of the world.

Among the many kinds of problems that  Swarm is well suited for
are economic models (with economic agents interacting with
each other through a market), the dynamics of social insects,
traffic simulation, ecological modeling, simulation games such as
SimCity and SimLife, and general studies of complex systems,
cellular automata, and artificial life.  

Judging from its specifications, Swarm is ideally suited to act as
the backbone of a full system-level simulation of land combat.
However, because of the unproven status of Swarm itself (it is, of
this writing, in the final stages of beta-testing), such a project
requires a considerable investment of both risk-tolerance and
commitment.
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Tier VIII: Original Conceptualizations of Combat

Tier VIII represents the potentially most exciting -- and certainly
most far-reaching -- tier of the eight tiers of applications. It
consists of using complex systems theory inspired ideas and basic
research to develop fundamentally new conceptualizations of combat.
It asks what is simultaneously the most direct and most expansive
possible question regarding the complex systems theoretic view
of land combat: "What are the universal characteristics of land combat,
thought of as a complex adaptive system?" Because of the very
speculative nature of this question, Tier-VIII thus also necessarily
takes the longest-term view of expected development time. But
while this tier obviously entails the greatest risk, it also promises
to yield the greatest potential payoff.

Tier-VIII compliments Tier-IV, on which the objective is to find
complex systems theoretic "measures" that describe combat.
Tier-VIII is concerned with what to do with those measures once
they are found.

Ideally, complex systems theory may suggest ways in which
battlefields must be configured (or compelled to self-organize) to
be maximally adaptable to the most wide-ranging set of
environmental circumstances. It would be most interesting, for
example, to be able to determine what doctrine, constraints
and/or specific rule sets prescribing what local actions can and
cannot be taken are most conducive to pushing a combat force
closer to the edge-of-chaos?

In the remainder of this section we discuss briefly a few
speculative ideas and technologies that might be used to develop
applications lying on this tier of applicability. The discussion is
mostly qualitative and is designed to plant seeds for future work.
Some more speculative and open questions, whose answers
undoubtedly require work to be done on this tier, appear in the
concluding section of this paper.

Dueling Parasites

Genetic algorithms have thus far figured very prominently on a
variety of tiers of applications, ranging from helping design more
efficient and robust command and control structures on Tier-II to
acting as the source of the "adaptive intelligence" of adaptive
autonomous agents in a multi-agent simulation of combat on
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Tier-VII. The reason for this, of course, is that genetic algorithms
are a mainstay of most complex systems theory models.33 Here we
outline a potentially powerful generalization of the basic genetic
algorithm introduced by Hillis [26], which may have a natural
application to the modeling of combat.

Conventional genetic algorithms search for "solutions" to
problems by "evolving" large populations of approximate
solutions, each candidate solution represented by a chromosome
(see Part I [28], pages 93-101). The genetic algorithm evolves
one population of chromosomes into another according to their
fitness using various genetic operators (such as crossover and
mutation), and, eventually, after many generations, the
population comes to consist only of the "most-fit" chromosomes.

This basic recipe has, of course, been shown to be useful for
finding near-optimal solutions for many kinds of problems.  One
of the major difficulties that all solution schemes for solving
combinatorial optimization problems must contend with,
however, is the classical problem of the search space containing
local optima: once a search algorithm finds what it "thinks" is the
global optimal solution, it is generally difficult for it to find ways
to not be "locked into" the local optimum. 

Hillis attacks this problem by exploiting host-parasite interactions
among two coupled genetic algorithm populations. To illustrate
the idea, consider his testbed system, which consists of finding a
sorting algorithm for elements of a set of fixed size that requires
the smallest number of comparisons and exchanges to be made
among the elements. The overall problem is to design an
efficient sorting network, which is a sorting algorithm in which the
sequence of comparisons and exchanges is made in a
predetermined order. A candidate sorting network, once defined
(by a chromosome), is easy to tested.

Now, Hillis' idea is to set up not one but two interacting genetic
algorithm populations, one population consisting of "solutions,"
or sorting programs (the hosts), and the other consisting of
"sorting problems" (the parasites). Having the two populations
interact effectively sets up an "arms-race" between the two
populations. While the hosts are trying to find better and better
ways to sort the problems, the parasites are trying to make the

33 A cautionary note about a too-cavalier use of genetic algorithms is
sounded in Appendix E.
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hosts less and less adept at sorting the problems by making the
problems "harder." 

The interaction between the two populations dynamically alters
the form of the fitness function. Just as the hosts reach the top of
a fitness "hill," the parasites deform the fitness landscape so that
the hill becomes a "valley" that the hosts are then forced to find
ways to climb out of and start looking for new peaks. When the
population of programs finally reaches a hill that the parasites
cannot find a way to turn into a valley, the combined efforts of
the co-evolving hosts and parasites has found a global optimum.
Thus, the joint, coupled, population pools are able to find better
solutions quicker than the evolutionary dynamics of populations
consisting of sorting programs alone.

The application to combat modeling is conceptually
straightforward. The idea is to apply genetic algorithms not to
just one side of a conflict, or to use genetic algorithms to find
"optimal" combat tactics for fixed sets of constraints and
environments, but to use joint, coupled, pools of populations, one
side of which represents a set of tactics or strategies to deal with
specific scenarios, and the other side of which seeks ways to alter
the environment in ways that make it harder and harder for
those tactics or strategies to work.

Percolation Theory and Command and Control Processes

Percolation theory represents the simplest model of a disordered
system. Consider a square lattice, where each site is occupied
randomly with probability p or empty with probability 1-p.
Occupied and empty sites may stand for very different physical
properties. For simplicity, let us assume that the occupied sites
are electrical conductors, the empty sites represent insulators,
and that electrical current can flow between nearest neighbor
conductor sites. At low concentration p, the conductor sites are
either isolated or form small clusters of nearest neighbor sites.
Two conductor sites belong to the same cluster if they are
connected by a path of nearest neighbor conductor sites, and a
current can flow between them. At low p values, the mixture is an
insulator, since a conducting path connecting opposite edges of
the lattice does not exist. At large p values, on the other hand,
many conduction paths between opposite edges exist, where
electrical current can flow, and the mixture is a conductor. At
some concentration in between, therefore, a threshold
concentration pc must exist where for the first time electrical
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current can percolate from one edge to the other. Below pc, we
have an insulator; above pc we have a conductor. The threshold
concentration is called the percolation threshold, or, since it
separates two different phases, the critical concentration. The
value of the critical concentration depends on the connectivity
pattern of the lattice.

What does this have to do with command and control structures
and processes? Conceptually, one can form analogies between
conductor sites and information processing and/or data-fusion
centers and between electrical current and information.
Information can be radar contact reports, commands pumped
down echelon or raw intelligence data. The problem of
determining the efficacy of a given flow of information can be
solved by interpreting it as a percolation problem. Among the
intriguing questions that inevitably arise from drawing such an
analogy, are "What command and control architectures are most
conducive to information flow?", and "What are the inherent
vulnerabilities in the existing command and control structure?",
and so on. 

Woodcock and Dockery also liken percolation through a lattice
to the percolation of military forces through an area of obstacles
or a combat zone of deployed adversarial forces.34

There is a lot of interesting theoretical work that is being done
on random graph theory [46], which deals with how the global
topological properties of a mathematical graph35 (such as its
overall connectivity, the maximum number of connected clusters
of sites that it contains, and so on) change as a function of the
number of nodes and links in the graph. Theoretical results such
as these provide important information about  how the overall
efficacy of, say, a command and control communications network
depends on quantifiable measures of its topology.

Exploiting Chaos

Deterministic chaos seems grounded in paradox: "simple"
equations generate "complicated" behavior, "random" appearing
trajectories harbor embedded  "patterns,"  and so on. Many
potential applications depend heavily on apparent paradoxes (if

34 See reference [18], page 323.
35 A mathematical grpah can be thought of as the network describing an
Integrated Air Defense System, but where the presence or absence of a given
link between nodes is specified by a probability distribution.
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not outright oxymoronic assertions) such as these, seeking to
find ways to exploit the inherent regularities that systems
exhibiting a deterministic form of chaos are naturally
predisposed to possess. Here we mention three such seeming
paradoxical properties of chaotic systems that might be exploited
on both practical and theoretical levels:

Chaotic Control

Chaotic Synchronization

Taming Chaos

Chaotic Control 

Chaotic control has been discussed in Part I [28].36 It refers to
using a chaotic system's sensitivity to initial conditions to stabilize
regular dynamic behaviors and to effectively "direct" chaotic
trajectories to desired states. It has been amply demonstrated
both theoretically and practically for a wide variety of real
physical systems. It is interesting to note that this is a capability
that has no counterpart in nonchaotic systems for the ironic
reason that the trajectories in nonchaotic systems are stable and
thus relatively impervious to desired control. 

From a theoretical point of view, chaotic control could
conceivably be used by decision makers to selectively guide, or
"nudge," combat into more desired states.  Of course, this presupposes
that an appropriate phase-space description of combat has been
developed, and all of the relevant control parameters have been
identified.

Chaotic Synchronization

Like chaotic control, the idea of being able to synchronize
coupled chaotic systems seems almost an oxymoron, but has its
roots in the same basic idea of selectively driving a chaotic
dynamical system to restrict its motion to a desired subspace of
the total phase space. Chaotic synchronization refers to
selectively coupling two identical chaotic systems in such away
that they then evolve with their corresponding dynamical
variables exhibiting exactly the same behavior in time
.

36 See pages 59-63.
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First introduced by Pecora and Carroll [47], the underlying
principle is to look for a range of parameter settings for which
the joint phase space of two chaotic systems is stable to motion
on a subspace where the motion is either regular or is of another
type of chaotic behavior [1].

Theoretical analysis of the general question of what happens
when one chaotic dynamical system is used to "drive" another --
which is how, on a conceptual level, one can interpret the
selective "nudging" of forces on a battlefield -- has potentially
enormous implications for our ability to predict how the overall
system of ground forces will react. Synchronization also has clear
applications to communications and developing a robust and
reliable form of IFF. Moreover, the fact that a generalized
relationship between driving signals and response system signals
exists at all, suggests that this function can in principle be found
and used for prediction purposes.37 Careful attention to the
theory behind, and potential practical applications of,
synchronized chaos is likely to have a high payoff.

Taming Chaos

A very recent addition to the list of counterintuitive behaviors of
chaotic systems is what can be described as "taming chaos" with
chaos. Disorder and noise in physical systems typically tends to
destroy any existing spatial or temporal regularities, or so one's
intuition would lead one to expect. Not so! For example, it can
be shown that some nonlinear systems are able to transfer
information more reliably when noise is present than when
operating in a noiseless environment.38 

Braiman, Lindner and Ditto39 have also recently reported an
interesting experiment in which an array of periodically forced
pendula lapses into spatiotemporal chaos when the pendula are
identical, but then snaps into a periodic behavior when disorder
is added to the system! Braiman, et. al., speculate that disorder can
be used to tame spatiotemporal chaos and suggest that "the role
of disorder in spatially extended systems may be less of a
randomizing influence than an intrinsic mechanism of pattern
formation, self-organization and control."40 Again, the ability to
selectively alter the apparently chaotic patterns of behavior on

37 See reference [1], pages 163-166.
38 This is a phenomenon called stochastic resonance; see, for example, F.
Moss and K. Weisenfeld, Nature, Volume 373, 1995, 33-36.
39 Y. Braiman, J. F. Lindner and W. L. Ditto, Nature, 30 Nov 1995, 465.
40 ibid., page 467.
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the spatio-temporal arena of the battlefield has broad
implications and potentially an enormously high payoff.
Whether, or to what extent, such a "taming" of chaos is possible
requires us to first carefully study the general phenomenon for
simple models of combat.

Pattern Recognition

"If you see a whole thing - it seems that it's always beautiful. Planets, lives....
But close up a world's all dirt and rocks. And day to day, life's a hard job, you

get tired, you lose the pattern." -- Ursula K. LeGuin

What is "Battlefield Intuition"? In a previous section (see page
26) we suggested that battlefield intuition is an innate ability to
perceive (though perhaps not to articulate) underlying patterns
in what otherwise seems to be irregular behavior. We compared
it to the intuition of the successful stock-broker on wall-street,
who has an intuitive "feel" for when certain stocks will rise and
fall. Whatever the underlying basis is for battlefield intuition,
however, certainly one of the most important fundamental
problems facing any commander is the pattern recognition
problem. In order to make sound decisions a commander must
know what is really happening on the battlefield. "Knowing what
is really happening" does not just mean finding better ways to get
at ground truth; it means seeing patterns of behavior that others
have either not looked for or have simply missed seeing
altogether. This is also a fundamental problem faced by any
agent in a complex systems theoretic multi-agent based
simulation of, say, a natural ecology. In order for an agent to
survive and successfully evolve in the ecology, it needs to identify
the parts of the environment that are relevant and understand
how the relevant parts really fit together, not how they appear to
fit. While solving the pattern recognition may, at first, appear to
have little in common with "complex systems theory," it is in fact
a problem that lies at the core of any complex systems theoretic
approach. It is thus also lies at the core of a complex systems
theory approach to land warfare.

Now, while this is not to say that complex systems theory has
"solved" the pattern recognition problem, it is meant to suggest
that some of the tools that complex systems theory has developed
for dealing with the general pattern recognition problem can
also be applied to discerning patterns on the battlefield. 

Land Warfare and Complexity, Part II: An Assessment of the Applicability of Nonlinear Dynamics and Complex Systems
Theory to the Study of Land Warfare, Andy Ilachinski, Center for Naval Analyses CRM 96-68, July 1996

112



The "conventional" tool-kit for dealing with patterns embedded
in otherwise chaotic dynamics comes from nonlinear dynamics
and consists of four basic parts [1]:

1. Finding the signal, in which the signal of interest is first
extracted from the raw data; of course, in many instances,
the raw data may be the signal, since there is no a-priori
way of discerning noise from meaningful information

2. Finding the phase space, which consists of the time-delayed
embedding technique of creating a d-dimensional vector
out of an a-priori "list" of numbers

3. Classifying the signal, which can be done by using such
measures as Lyapunov exponents, various fractal
dimensions, and other quantities independent of the
initial conditions

4. Developing a model and predicting future behavior, based on
the classifications made during the previous step

We will not go into any greater detail about any of these steps,
except to say that these are techniques that have by now been
fairly well established in the research literature. Of course, as
with any general set of tools, each of the tools in this tool-chest
has certain advantages and disadvantages and is more or less
adept at dealing with specific kinds of data.

In addition to these more or less "conventional" tools borrowed
directly from nonlinear dynamics theory, however, there are
other -- more theoretical and speculative -- methods available. We
mention three such methods: (1) high-level rule extraction using
genetic algorithms, (2)  self-organizing neural nets to sort raw
information, and (3) data-base mining for knowledge.

High-Level Rule Extraction

Richards, Meyer and Packard [50] have recently suggested a way
to extract two-dimensional cellular automaton rules directly from
experimental data. Recall that two-dimensional cellular automata
are a class of spatially and temporally discrete, deterministic
dynamical systems that evolve according to a local evolutionary
rule.41 Richards, et. al.'s idea is to use a genetic algorithm to

41 For a review of cellular automata, see pages 81-91 in Part I [28].
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search through a space of a certain class of cellular automata
rules for a local rule that best reproduces the observed behavior
of the data. Their learning algorithm (which was applied
specifically to sequential patterns of dendrites formed by NH4Br
as it solidifies from a supersaturated solution) starts with no
a-priori knowledge about the physical system. It, instead, builds
increasingly sophisticated "models" that reproduce the observed
behavior.

Though Richards, et. al.'s  NH4Br testbed has a-priori little to do
with combat, it is in principle not that far away. Like combat,
dendritic NH4Br data exhibits pattern structure on many
different length scales and a dynamics takes place on different
time scales. Moreover, there is often very little information
available regarding the physical variables describing the dendritic
solidification of NH4Br. While one can determine whether a
given point is solid or liquid, for example, one typically knows
nothing about the solute concentration or temperature field in
the liquid. The situation is much the same in combat, where one
may know the disposition of one's forces and perhaps something
about what individual combatants are doing at what time, but the
specifics of their actions and of any internal dynamics they are
following are effectively unknown. In the NH4Br, despite this lack
of knowledge of what is happening on the micro-level, Richards,
et. al.'s algorithm is able to find a rule that qualitatively
reproduces the observed data.

Richards, et. al. comment that while the exact relationship
between the rule found by their genetic algorithm and the
fundamental equations of motion for the solidification remains
unknown, it may still be possible to connect certain features of
the learned rule to phenomenological models.

"We propose that this type of 'derivability gap' is the rule, rather than the
exception for most complex spatial patterns observed in nature. For such
phenomena, it may be impossible to derive models which explain observed
spatiotemporal complexities directly from fundamental equations and 'first
principles.' Though perhaps underivable, the dynamical structure extracted
by the learning algorithm is undeniable, and represents a new type of
progress, perhaps the primary kind of understanding possible for complex
patterns."42

It is tempting to speculate what insights a similar approach to
extracting "low-level rules" from "high-level observed behavior"
on the battlefield might have to offer.

42 Reference [50], page 201.
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Self-Organizing Maps

A Self-Organizing Map (SOM) is a general unsupervised
neural-network.43 Introduced by Kohonen44 in the early 1980s, it
is designed to order high-dimensional statistical data so that
inputs that are "alike" generally get mapped to each other.
Unlike backpropagating neural nets, that require that the output
part of a desired input-output set of pairs is known a-priori,
unsupervised learning effectively tells the trainer what latent
patterns and similarities exist within a block of data. Thus, it can
be used as a means by which to "self-organize" ostensibly
patternless masses of information like raw intelligence data, or
existing databases consisting of various unstructured bits of
information about an adversary. The idea is literally to allow the
raw data to "tell the intelligence analyst" what kinds of innate
structural patterns might exist in the data. It is not a cure-all -- as
it requires behind-the-scenes preprocessing and some
assumptions to be made about what kind of structuring and
"document-distance" measures are appropriate -- but the
methodology potentially provides an important first step in
helping an analyst, or field commander, intelligently sift through
apparently reams of formless information.

An example of how SOMs can be used as "information
organizers" is a recent effort called WEBSOM.45 WEBSOM is
designed to automatically order, or organize, arbitrary free-form
textual information into meaningful maps for exploration and
search. It automatically organizes documents into a
two-dimensional grid so that the closer two documents are
"related" to each other the closer they appear together on the
grid. More specifically, WEBSOM has been applied to ordering
documents on the World-Wide-Web (WWW).

Anyone who has spent even a short time "cruising" the WWW
knows that while there is a tremendous amount of information
available on the web, desired information is more often than  not
extremely difficult to find. Web search engines such as Lycos46 or
AltaVista47 are "intelligent" enough to retrieve some meaningful
sites for specific queries, but are next-to-useless when it comes to
finding sites or files in cases where the actual subject or object of

43 See Part I [28], pages 116-130.
44 T. Kohonen, Proceedings IEEE, Volume 78, 1990, 1464-1480.
45 The best available inforation on WEBSOM can be found at the WWW
address http://websom.hut.fi/websom/. 
46 http://lycos.cs.cmu.edu/.
47 http://altavista.digital.com.
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interest is only vaguely known. Even in those cases where existing
search engines are able to find a few useful files, these files are
often buried deep in an otherwise lengthy list of files that are
only marginally related to a specific query, if at all. 

WEBSOM is designed to help such free-form searches by
automatically organizing a set of documents so that related
documents appear close to each other. An initial testbed for the
technique consisted of 4600 full-text documents from the
"comp.ai.neural-nets" newsgroup, containing a total 1,200,000
words.48 

After being organized by WEBSOM, the newsgroup documents
can be viewed on four levels. The top level consists provides an
overview of whole document collection. It consists of individual
nodes representing the highest-level clusters of documents,
arranged by similarity, and uses grey-scales to indicate clustering
density. Levels two and three are accessed by  clicking the mouse
on a desired super-cluster of related documents, and represent
successively deeper nestings of documents organized into
mid-level clusters. The fourth, and final, level is accessed by
clicking the mouse on a desired cluster on the third level, and
consists of actual document listings, now grouped such that all
"nearby" documents are closely related. As one proceeds down
from the top-most to bottom-most level, one goes from the most
general clusters (neural nets, fuzzy logic, forecasting,...) down to
more finely divided clusters (neural nets in plant manufacturing,
fuzzy control of neural nets, ...) down to individual documents.
WEBSOM thus effectively maps out the entire "document space"
according to what documents actually inhabit that space.
"Closeness" is interpreted with respect to semantic content, as
approximated by a statistical sampling of word contexts. Other
measures could be devised for other applications.

In this specific newsgroup example, WEBSOM provides a display
of the similarity relations of the subject matters of the
documents. These are reflected in the distances between
documents in the document map. The density of documents in
different parts of the map are reflected by varying shades of grey
on the document display. One can easily imagine suitably
generalized versions of this methodology being applied to
organizing raw intelligence data. More speculatively, one can
48 An interactive demonstration of using WEBSOM for this example
appears at the site http://websom.hut.fi/websom/. The discussion
foolows the paper "Newsgroup exploration with WEBSOM method and
browing interface," by T. Honkela, et. al. that can be retrieved from this site.
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imagine using SOMs to provide "unconventional" partitionings
of  battlefield processes. That is, just as WEBSOM is able to tell us
something about the natural ordering in document space, from
which we are then able to infer patterns that can be used to more
intelligently guide our search for information, so SOMs may be
able to tell an analyst or field commander something about the
natural ordering in "combat space," from which an analyst or
field commander is then able to infer patterns that he can use to
make "more informed" decisions. 

Data-Base Mining for Knowledge

Frawley, et. al. [] define knowledge discovery as the "nontrivial
extraction of implicit, previously unknown, and potentially useful
information from data." Much work has recently been done in
the area of database mining, which is essentially an application of
the scientific method to database exploration. The basic problem
is easy to state: given a data set find a pattern, or patterns, that
describes meaningful, consistent relationships among subsets of
the database. Ideally, of course, the pattern should be simpler to
articulate than merely enumerating all the facts. Knowledge
discovery is therefore generally concerned with inducting, from
data, possible rules or "laws" that may have been responsible for
generating that data. The connection to the basic pattern
recognition problem on the battlefield, should again be obvious
from a complex systems theory point of view: given that a
database D contains a "record" of a land warfare campaign, we
are interested in finding the "implicit, previously unknown, and
potentially useful information" that can be extracted from D.

We do not have the space here to go into the details of the many
techniques that are available for addressing the general database
mining problem. We briefly mention three recent examples []:

Kepler, which is a system designed to find functional
relationships among quantitative data. Applied to a data
base consisting of experimentally derived fluid flow data,
for example, Kepler is able to "discover" such basic laws as
Bernoulli's theorem for laminar flow.

Thought, which is capable of incrementally discovering
production rules by classifying and abstracting from given
examples, and then finding implications between the
descriptions according to the relationships it finds among
corresponding clusters of data.
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Posch, which is an automated artificial intelligence systems
designed to discover causal relationships in a
medical-record database

Some, though not all, data-mining tools can be thought of as
being natural-language equivalents of the more number-intensive
techniques developed by nonlinear dynamics for finding
underlying patterns in number fields. It would be an interesting
exercise to use some of the available data-mining techniques to
explore what hidden relationships might exist in historical
combat data, for example, not to mention using such techniques
for exploring patterns and relationships in data that summarizes
combat exercises and /or actual  combat.

Fire-Ant Warfare

As an example of a potentially far-reaching technology that is
clearly inspired by complex system theoretic concepts is the Fire-
Ant Warfare idea recently put forth by Libicki [38]:

"Today, platforms rule the battlefield. In time, however, the large, the
complex, and the few will have to yield to the small and the many.  Systems
composed of millions of sensors, emitters, microbots and miniprojectiles, will,
in concert, be able to detect, track, target, and land a weapon on any military
object large enough to carry a human.  The advantage of the small and the
many will not occur overnight everywhere; tipping points will occur at
different times in various arenas.  They will be visible only in retrospect."  

The idea is to exploit the collective intelligence of a swarm of
(perhaps thousands of) tiny intelligence-gathering machines and
small smart-weapons.  Libicki suggests that systems of millions of
sensors, emitters, microbots and miniprojectiles can be used in
concert to detect, track, target and land a weapon on military
targets. This approach is reminiscent of Rodney Brooks' [11]
micro-bot artificial-life approach to artificial intelligence. In
contrast to the traditional top-down methods that emphasize
abstract symbol manipulations and high-level reasoning skills,
Brooks proceeds from the bottom-up by using many small and
individually "simple" micro-bots, or autonomous agents, to
assemble a "collective intelligence"  that -- when the agents act in
concert -- is capable of performing very sophisticated tasks. We
will not say more about this very active school of research, except
to suggest that artificial-life-like fire-ant warfare represents not
just a conceptual advance in the way we think about warfare, but
a significant technological advance in how we conduct it as well. 
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Suggested Directions
The most important overall suggestion that can be made
regarding the applicability of complex systems theory to land
warfare is to be patient! As discussed at length in Part I of this
report, and stressed repeatedly throughout both volumes,
complex systems theory is a very young, very immature science,
which -- at this time -- is not even sure of its own future direction,
much less of its applicability to other, specific areas. Ironically, we
must therefore find ways to "tune" ourselves to the
"edge-of-chaos" (see Part I, page 76), and be on special guard
against both seeing in complex systems theory more than is
currently there, and against prematurely walking away in
disappointment from what we have not taken the proper time to
discover is there already.

General Directions

General guidelines for applying some of the basic lessons learned
from nonlinear dynamics and complex system theory include:

Familiarization at all Levels of the Military
Chain-of-Command. If the ideas of nonlinear dynamics and
complex systems theory are to percolate through all levels
of the military, first and foremost it is important for its
leaders to come up to speed on, and develop an intuition
for, some of the technical aspects of these approaches.
More simply, one has to get one's hands dirty! There is no
better way of getting a feel for why chaos and complexity
have potentially so much to tell us about combat, than by
sitting down in front of a computer and "playing" with a few
simple but well-chosen models. The basics of nonlinear
dynamics and complex systems theory must also be taught
at an early stage at military schools.

Develop "Nonlinear Intuition." It is vital for every decision
maker to go beyond the conventional "linear" intuition and
develop an intuition for the kinds of nonlinear behaviors
pervasive in complex systems. Arguably, our most successful
battlefield commanders already possess it. But, like the
mysteriously successful stock-brokers who have an uncanny
"feel" for which way the stock-market will turn but are
unable to explain exactly where their feeling comes from,
one strongly suspects that only a very few field commanders
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possessed of an uncanny "battlefield intuition" can exactly
articulate the source of their intuition. Now, while
"battlefield intuition" is certainly not something that can
easily be taught (or taught at all -- there is no mold for
commanders like Patton!), there is a part of it that just as
certainly rests on an appreciation of, and intuition for, how
patterns can form in nonlinear dynamical systems; and this
is something that, with proper instruction and practice, can
be learned.

Emphasize Strong Interdisciplinarity. If there is one
universally agreed upon "insight" that has emerged out of
Santa Fe Institute's first dozen years of existence it is that
progress in CST demands an interdisciplinary approach. It
is not enough to merely know everything there is to know
about some complex system. One must also be either well
versed in many other disciplines, or, ideally, be in the
company of and continually engage in a free-flow of ideas
with individuals who are well versed in many other
disciplines. Complex adaptive systems, it seems, are best
studied by other complex adaptive systems. A
cross-fertilization of ideas and approaches is absolutely vital
for the largely inductive process by which progress is made
in CST, and can come about only in an open
interdisciplinary setting.  

Look for Inherent Nonlinearities in Conventional Models.
A fundamental lesson of nonlinear dynamics theory is that
one can almost always expect to find some manifestation of
chaos whenever nonlinearities are present in the
underlying dynamics of a model. This fundamental lesson
has potentially significant implications for even the simplest
combat models. Though some work has recently been done
to determine the implications of having nonlinearities
embedded within conventional models, many important
insights into how our current models of land combat really
behave remain to be discovered.

Redefine Traditional MOEs and Data Collection
Requirements. If land combat is a bona fide candidate
system for study as a complex system it must, initially, be
treated essentially as "just another system" for study by CST.
This means that the first real research task is to re-examine
what we know about the conduct of war from the
perspective of complex systems theory. The traditional
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military theorist's point of view, with a predisposition
towards force-strength, fire-power, attrition statistics, and so
on, may be inappropriate, incomplete and/or simply
inadequate to describe combat from a CST point of view.
CST will likely redefine basic data collection requirements
and suggest that we rethink our answers to many
fundamental questions: What measures are appropriate? What
data are missing? Satellites, for example, which have not
heretofore been thought of combat "data collectors," can
be gainfully employed to obtain measures of the "overall
flow" of combat.

Start with "Minimal Idea Models," not Full-Blown Detailed
System Models. Conventional military wisdom expects the
justification for an important decision to come from a
sufficiently "fancy model." The more lines of computer
code a model has, so the conventional wisdom goes, the
more attention should be given to what the model has to
say.  As an important counterpoint, it is well worth
remembering that some of the greatest breakthroughs in
physics have come from very simple models that capture
only the essence of a system. The hydrogen atom, for
example, which is the simplest atom, was the key "model"
that led to the development of quantum mechanics. The
first task of any fundamental research effort -- and this is
what finding ways of applying complex systems theory to
land combat must necessarily be viewed as --  is to find a
simple enough system that, while it is not an exact replica
of the system that one is trying to understand and may lack
many of its real-world complications, is able to capture
some of the essential properties of the real system. 

Attack Problem from Diverse Fronts. Complex system
theory consists of any and all ways of going about
understanding the behavior of a complex system. This
means attacking the problem from diverse fronts. The
previous bullet suggests that the first goal of any
fundamental research effort is to develop a simple model
that captures the essential behavior of a system. A second,
and equally as important, goal is to try to understand lots
and lots of different systems in the hopes of discovering
some universal patterns of behavior that are common to all
of them. This second goal is really how "complex systems
theory" is practiced at the Santa Fe Institute. Given that other
"simple models" of other complex systems are being
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developed by researchers in other disciplines, it is
incumbent on the military research and development
community to contribute its own "simple models" of
combat to this growing set of exemplar models of complex
systems. The benefit would be two-fold: (1) behaviors of
models of combat could be directly compared with models
of other complex systems to help discern any universal
patterns, and (2) the simple model can be studied on its
own terms from a complex systems theory perspective to
lend insight into the essential behaviors on a battlefield. A
third goal, or strategy, is purely empirical. We need to
develop new tools to record relevant data (and to
re-examine historical data) from a complex systems theory
perspective.   

Some Open Questions

We conclude this paper by presenting a list of some open and
overtly speculative questions:

Are there measures of combat "complexity"?

Are there quantifiable measures of complexity on the battlefield
that can be used as indicators of qualitative changes in such
properties as force strength, battle tempo, morale, etc.? Are there
measures with which the overall "fighting health" can be
ascertained and/or predicted? 

Can patterns of observed chaotic data be exploited?

Suppose that one can show that certain aspects of land combat
are "chaotic" (in the technical sense). The basic question to ask is
whether we can exploit any underlying order in the deterministic
chaos to make short-term predictions? More precisely, we ask,
"Given data set X observed during time period ∆T, how do you
predict what the system will be doing (=φ(X)) during time ∆t at a
time  τ later?" (see figure 20). Can we use historical attrition
data? What other kinds of data might prove useful? How long can
τ be before φ(X) loses its predictive value? What are the
parameters describing the behavior of land combat that are most
amenable to short-term predictability
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Figure 20. Schematic of basic chaotic-pattern exploitation question

X = Data
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What is an appropriate phase space description for
combat?

What parameters can be used such that, in their phase space, a
strange-attractor-like pattern emerges on a higher level?  Suppose
that a general combat "configuration" -- including force
structures, tactics and strategies -- were encoded as a genome.
The genome would thus act as a reference template for all
possible actions, counteractions, counter-counteractions, and so
on, of all possible combat configurations. Genetic algorithms
could be used to search for possible parameter spaces for which
the long-term behavior of the system, as a whole, appears more
"ordered."

Can the chaos of combat be "controlled" or "tamed"?

Part I [28] of this paper discussed a relatively new technique
called chaotic control.49 Chaotic control is a technique whereby the
extreme sensitivity of chaotic systems to small perturbations to
initial conditions (the so called "butterfly effect") is  exploited to
stabilize regular dynamic behaviors and to effectively "direct"
chaotic trajectories to a desired state. The question is, "Are there
ways to 'nudge' the seemingly erratic patterns (i.e. trajectories) of
behavior on the battlefield to follow desired courses?" If an
appropriate phase space description of combat can be found (see
preceding question), it might be possible to map out the
behavioral characteristics of various regions of that phase space.
For example, can we find ways to selectively apply feedback to
induce desired behavioral transitions? In a combat setting,

49 See Reference [1], pages 59-62.
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control parameters might include the character, makeup and
numerical force strength, type of weaponry, timing and accuracy
of intelligence reports,  tactics, etc.

What are the "optimal" strategies of adaptation on the
battlefield?

Can complex systems theory be used to suggest ways in which a
combat system can continue to best adapt to changing situations
and scenarios? Given a system S(E) that has successfully adapted
to environment E, suppose E changes to E'. What must S do to
itself to get to a state S' (in which it has adapted to E') and how
fast must it do it?

What role does the psychology of the individual
combatant play in shaping the combat process?

One of the first things a complex systems theorist does while
developing a model of, say, a natural ecology, is to understand
the dynamics between individual organisms and their
environment. Yet, from a military modelist's point of view, the
psychology of the individual combatant, and the role the combat
environment plays in shaping his behavior, remains the one area
that is almost never developed to any depth. This is not to
suggest that the problem is easy; it is not. It is meant to suggest
that any earnest attempt at describing the combat environment
from a complex systems theory point of view must carefully
consider the relationship between combatant and environment.

How "complex" must a combat system be in order for it
to be amenable to the tools of complex systems theory?

This applies to both spatial and temporal scales. Two individual
combatants, though they are both complex organisms with rich
inner psychological dynamics, do not make up a "complex
system." Are ten combatants enough? Are a hundred?  

How can one quantify the true value and nature of
"information" on a battlefield? 

A popular current buzzword in the military is "information
warfare," which deals with the exploitation of various forms of
information -- textual, electromagnetic, psychological, and so
forth. This question deals with a more fundamental meaning of
the word "information." Whereas the traditional interpretation of
combat has been strictly materialist -- combat as sets of material
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objects reacting to other material objects -- complex systems
theory views combat as a system consisting of material objects
reacting to information -- information about the perceived state
of the system, information about the prior expectations of an
opponent's force structure and ability to fight, and so on.
Combat is understood not just as a set of local fire-storms, each
consisting of physical skirmishes among individual combatants,
but as a complicated interleaving network of physical action
resulting from local interpretations of local information. The
problem is to articulate what we mean by information.

Does the presence of fractals in combat point to
something fundamental?

Are the fractal-like power-law scalings that have been observed
for casualty rates and message traffic flow (see pages 74-75)
indicative of some deep underlying process (akin to
self-organized criticality) that can be exploited, or are they
merely interesting curiosities and nothing else?
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Appendix A: A Summary of the
Mathematical Tools of Nonlinear Dynamics
and Complex Systems Theory Discussed in
Part I of this Report

Below is a partial summary of the mathematical tools of
nonlinear dynamics and complex systems theory discussed in
Part I [28] of this report:

Qualitative Characterization of Chaos. Four qualitative
methods for verifying the presence of chaos in a system
were discussed. These included looking at the system's
time-dependent behavior, using a Poincare plot to reduce the
dimensionality, calculating the autocorrelation function and
observing the power spectrum for the system.

Quantitative Characterization of Chaos. Three sets of
quantitative measures of chaos were introduced, including
Lyapunov exponents (that measure the exponential
divergence of initially nearby trajectories), generalized fractal
dimensions (that, roughly speaking, measure the minimum
number of variables needed to specify a chaotic attractor),
and the Kolmogorov-Sinai entropy (that measures the rate of
information gain per unit time in observing a chaotic
system).

Time-Delayed Embedding. The embedding technique is a
method for reconstructing a state space from time-series  
data. It assumes that if the embedding dimension is large
enough, the behavior of whatever system is responsible for
generating the data can be described by a finite
dimensional attractor. Its main strength lies in providing
detailed information about the behavior of
degrees-of-freedom other than the ones that are directly
observed.

Chaotic Control. Chaotic control exploits the fact that
chaotic systems exhibit sensitivity to initial conditions to
stabilize regular dynamical behaviors and thereby effectively
"direct" chaotic trajectories to a desired state.
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Cellular Automata. Cellular automata are a class of spatially
and temporally discrete, deterministic dynamical systems
characterized by local interaction and an inherently parallel
evolution. They serve as prototypical mathematical models
of complex systems, and appear to capture many essential
features of complex self-organizing cooperative behavior
observed in real systems.

Genetic Algorithms. Genetic algorithms are a class of
heuristic search methods and computational models of
adaptation and evolution based on natural selection.
Genetic algorithms mimic and exploit the genetic dynamics
underlying natural evolution to search for optimal solutions
of general combinatorial optimization problems. This very
powerful tool is used frequently as the backbone of many
artificial life studies.

Agent-Based Simulations. Agent-based simulations of
complex adaptive systems are predicated on the idea that
the global behavior of a complex system derives entirely
from the low-level interactions among its constituent
agents. By relating an individual constituent of a complex
adaptive system to an agent, one can simulate a real system
by an artificial world populated by interacting processes.
Agent-based simulations are particularly adept at
representing real-world systems composed of individuals
that have a large space of complex decisions and/or
behaviors to choose from.

Swarm. Swarm (currently under development at the Santa
Fe Institute) is a multi-agent simulation platform for the
study of complex adaptive systems. The goal of the Swarm
project is to provide the complex systems theory research
community with a fully general-purpose artificial-life
simulator. Swarm has been intentionally designed to include
as few ad-hoc assumptions about the design of a complex
system as possible, so as to provide a convenient, reliable
and standardized set of software tools that can be tailored
by researchers to specific systems.  Another multi-agent
model, called ECHO and developed by John Holland, is
not as suitable for general purpose modeling as Swarm
because of its many biases and in-built assumptions about
the functioning of natural ecologies.
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Neural Networks. Neural nets represent a radical new
approach to computational problem solving. Their
bottom-up methodology stands in stark contrast to traditional
top-down approach to artificial intelligence (AI). The
approach is inspired by such basic skills of the human brain
as its ability to continue functioning with noisy and/or
incomplete information, its robustness or fault tolerance, its
adaptability to changing environments by learning, etc.
Neural nets attempt to mimic and exploit the parallel
processing capability of the human brain in order to deal
with precisely the kinds of problems that the human brain
itself is well adapted for; in particular, pattern recognition.
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Appendix B: Nonlinear Dynamics and Chaos

Key Concepts 
Some of the key concepts of nonlinear dynamics and chaos
include the following:

Phase Space.  Phase space is a mathematical space spanned
by the parameters that describe a dynamical system's
behavior. If the system is described by an ordinary
differential flow the entire phase history is given by a
smooth  curve in phase space. Each point on this curve
represents a particular state of the system at a particular
time. For closed systems, no such curve can cross itself. If a
phase history a given  system returns to its initial condition
in phase space, then the system is periodic and it will cycle
through this closed curve for all time. For example, a
mechanical oscillator moving in one-dimension has a
two-dimensional phase space spanned by the position and
momentum variables.

Nonlinear Feedback. A key dynamical mechanism
responsible for deterministic chaos is nonlinear recursive
feedback (or mixing). Chaos is the result of a cascading
series of feedback chains whereby one variable affects
another which in turn affects the first, and so on. Think of a
breadmaker's dough, as it is stretched and folded during
kneading. A single lump of dough undergoes a seemingly
erratic behavior as it is stretched and folded to produce a
widely distributed, and finely structured, sheath that
becomes intertwined with other stretched and folded
sheaths of dough. The same basic mechanism is responsible
for the appearance of the finely ordered microstructure
immersed in what appears to be global disorder in chaotic
systems.

Sensitivity to Initial Conditions. Deterministic chaos is
characterized chiefly by the so-called "Butterfly Effect,"
which alludes to the fact that two initially nearby points of a
chaotic trajectory diverge exponentially in time. 

Unpredictable Determinism. Sensitivity to initial conditions
implies that, despite the dynamics of a system being
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rigorously deterministic, the long-term behavior of such a
system appears irregular and is unpredictable. 

Bifurcations. A Bifurcation is the splitting into two modes
of behavior of a system that previously displayed only one
mode. It represents a transformation from one type of
behavior into a qualitatively different type of behavior. This
splitting occurs as a control parameter is continuously
varied. In the logistic equation, for example, a
period-doubling bifurcation occurs whenever all the points
of a period-2n cycle simultaneously become unstable and
the system becomes attracted to a new period 2n+1 cycle.

Fractals. A fractal structure is characteristic of chaotic
phenomena. Loosely speaking, fractals are geometric
objects characterized by some form of self-similarity; that is,
parts of a fractals, when magnified to an appropriate scale,
appear similar to the whole. Finer and finer magnification
reveals smaller and smaller versions of essentially the same
structure on all levels. A more technical definition of
fractals is that they are objects whose fractal (or Hausdorff)
dimension does not equal its topological dimension.  

Universality. Universal behavior, when used to describe the
behavior of a dynamical system, refers to behavior that is
independent of the details of the system's dynamics. It is a
term borrowed from thermodynamics. According to
thermodynamics and statistical mechanics the critical
exponents describing the divergence of certain physical
measurables -- such as specific heat, magnetization or
correlation length -- are universal at a phase transition in
that they are essentially independent of the physical
substance undergoing the phase transition and depend
only on a few fundamental parameters (such as the
dimension of the space).  Similarly, in nonlinear dynamics,
it has been shown that all equations of a particular
universality class exhibit the same universal qualitative and
quantitative patterns of behavior. Feigenbaum's universal
convergence rate of (the single) control parameter for all
one-dimensional maps that have a single quadratic
maximum on the unit interval (see Part I, page []) is one
example. 

Strange Attractors. A strange attractor is an attractor --
which means it represents a region of phase space that the
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system inevitably approaches as it evolves -- that also displays
sensitivity to initial conditions. This has the important
consequence that while the behavior for each initial point
may be accurately followed for short times, prediction of
long-time behavior of trajectories lying on strange attractors
becomes effectively impossible. However, strange attractors
also reveal a long-term trend in the overall dynamics. That
is, they reveal an underlying global pattern to motion that,
locally, appears chaotic. Strange attractors also frequently
have a self-similar or fractal structure.

Multiple Attractors. Nonlinear systems typically harbor
multiple basins of attraction and/or multiple attractors.
Moreover, the boundaries between basins can have very
complicated fractal forms. The manipulation of transitions
among two or more attractors can potentially provide
important insights for strategic options.

Basic Lessons

The major lesson of nonlinear dynamics and deterministic chaos
is that a dynamical system does not have to be "complex" or to be
described by a large set of equations, in order for the system to
exhibit chaos -- all that is needed is an embedded source of
nonlinearity. 

Chaos teaches us that even though many models are susceptible
to seemingly erratic behavior, if that behavior stems from
deterministic chaos then there is still the hope of identifying
relevant trend and patterns if the behavior of the model's output
is studied for a long enough period of time. In other words,
apparently random output may be indicative of a long-term order
that will become discernible only after the system has been
observed for a long enough period of time and/or has been
explored over a large enough region of its phase space.

Basic lessons of nonlinear dynamics and deterministic chaos
include:

Chaos is Pervasive. Nonlinear dynamics teaches us to
appreciate the fact that chaos is pervasive. Indeed, because
nonlinearity is such a common occurrence in nature,
almost all real physical systems harbor chaotic behavior for
some parameter regimes. Stanislaw Ulam once suggested
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that "to call the study of chaos 'nonlinear science' is like
calling zoology the study of non-elephant animals." (Gleick,
p68 []). While linearity is a convenient approximation of
reality, it fails to adequately describe most real-world
systems. This pervasiveness of nonlinearity suggests that
whenever "apparently random" behavior is observed in a
real system, it can probably be described by deterministic
(non-random) chaos.

Small Perturbations can Induce Large Changes. Small
changes in the control parameters of nonlinear systems can
lead to major qualitative transitions of behavior. Contrast
this with the more traditional ("linear") view which assumes
that small perturbations lead to only small changes in a
system's behavior. Furthermore, knowledge of how
bifurcations arise in chaotic systems (1) tells us what kinds
of transitions to expect when we add feedback to a system,
and (2) suggests ways in which to selectively adjust feedback
so as to induce desired transitions.

Behavior Depends on Location in Phase Space. The kind of
behavior a dynamical system exhibits -- whether it is a
simple limit cycle, a periodic orbit, or a strange attractor
with fractal properties -- depends on where the dynamical
systems "lives" in its parameter space. 

Universality Implies Predictability and Simplicity.
Universality (see above) has two very important
implications: (1) quantitative predictability, whereby, for
example, the spacing between and convergence rate
between different regimes of dynamical behavior can be
quantitatively predicted; and (2) a simplification of complexity,
by asserting that large classes of systems all behave
qualitatively and quantitatively the same way. "The
wonderful thing about this universality is that it does not
matter much how close our equations are to the ones
chosen by nature; as long as the model is in the same
universality class ...  as the real system, both will undergo a
period-doubling sequence. That means that we can get the
right physics out of very crude models." Cvitanovic []

Chaos Contains Embedded Structure and Pattern. While
individual trajectories of a chaotic system appear to be
erratic or even random, the attractors of the system harbor
important information about certain recurrent aspects of its
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long-term behavior. For example, while a strange attractor
may not help us to predict the step-by-step evolution of a
system along one of its possible trajectories, its structure
tells us much about what the overall trajectory will look like.
Moreover, the relative time that an orbit spends visiting
various parts of a strange attractor gives us an idea about
how likely the system is to be in certain parts of its phase
space.

Chaos Does Not Preclude Short-Term Predictability. Given
sufficient data, techniques such as time-delayed embedding
provide short-term predictions about a system's behavior,
even if the system is chaotic. Moreover, these predictions
can be made even when the underlying dynamics is not
known. Lyapunov exponents quantify the limits of
predictability.

Chaos can be "Controlled." The extreme sensitivity of
chaotic systems to small perturbations to initial conditions
can be exploited to stabilize regular dynamic behaviors and
to effectively "direct" chaotic trajectories to a desired state.
Moreover, this can be done using only experimental data in
which no model is available for the system. It is interesting
to point out that this is a capability that has no counterpart
in nonchaotic systems for the ironic reason that the
trajectories in nonchaotic systems are stable and thus
relatively impervious to desired control. A recent survey
article [] lists applications for communications (in which
chaotic fluctuations can be put to use to send controlled,
pre-planned signals), for physiology (controlling chaos in
heart rhythms), for fluid mechanics and chemical reactions.
The important point to remember is that once a system has
been shown to be chaotic, its attractor must contain a dense
set of unstable periodic orbits and is therefore susceptible
to some form of chaotic control.

Low-Dimensional versus High-Dimensional Chaos. Chaotic
dynamics is often misinterpreted to mean random dynamics.
Strictly speaking, since chaos is spawned from a
deterministic process, its apparent irregularity stems from
an intrinsic magnification of an external uncertainty, such
as that due to a measurement of initial conditions.
Sensitivity to initial conditions amplifies an initially small
uncertainty into an exponentially large one; or, in other
words, short-term determinism evolves into long-term
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randomness. Thus, the important distinction is not between
chaos and randomness, but between chaotic dynamical
systems that have low-dimensional attractors and those that
have high-dimensional attractors. For example, if a time
series of evolving states of a system is generated by a very
high dimensional attractor (or if the dynamics is modeled
in a state space whose dimension is less than that of the
attractor), then it will be essentially impossible to gather
enough information from the time series to exploit the
underlying determinism. In this case, the apparent
randomness will in fact have become a very real
randomness, at least from a predictability standpoint. On
the other hand, if the time series is generated by a relatively
low dimensional attractor, it is possible to exploit the
underlying determinism to predict certain aspects of the
overall behavior. The Information dimension can be used to
estimate the minimum number of variables needed to
describe a system. Moreover, if a system can be shown to
have a small non-integer dimension, it is probable that the
underlying dynamics are due to nonlinearities and are not
random.
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Appendix C: Complex Systems Theory

Key Concepts 
Some of the key concepts of complex systems theory include the
following:

Autonomous Agents. Autonomous agents are entities that,
by sensing and acting upon their environment, try to fulfill
a set of goals in a complex, dynamic environment. They can
sense the environment through sensors and act on the
environment through actuators; they have an internal
information processing and decision making capability; and
they can anticipate future states and possibilities, based on
internal models (which are often incomplete and/or
incorrect). Since a major component of an agent's
environment consists of other agents, agents spend a great
deal of their time adapting to the adaptation patterns of
other agents.

Self-Organization. Self-organization is a fundamental
characteristic of complex systems. It refers to the
emergence of macroscopic nonequilibrium organized
structures due to the collective interactions of the
constituents of a complex system as they react and adapt to
their environment.  

Non-equilibrium. A system is said to be in equilibrium when
it is in a particularly simple, quiescent state such that its
properties are constant and spatially and temporally
uniform. The most uninteresting systems, from the point of
view of complex systems theory are systems that are in
equilibrium. The most interesting systems are those that
exist in far-from-equilibrium states, continually seeking new
ways to adapt to their environment.

Co-adaptation and co-evolution. Coadaptation refers to the
mutually selective forces acting on entire groups of
organisms in an ecology -- or autonomous adaptive agents
in an artificial life ecology -- to accumulate favorably
interacting genes in the gene pool of the population.
Complex systems deal with not just one organism adapting
to a given set of circumstances, but with many organisms, all
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adapting to, and evolving with, all of the organisms that
make up their environment.

Decentralized Order. Decentralized order refers to the fact
that the spontaneous appearance of order in a complex
system is typically due solely to parts acting locally on local
information. The global order thus emerges without any
need for external control. There is no God-like "oracle"
dictating what each and every part ought to be doing.

Phenotype and Genotype. Phenotype refers to the
observable characteristics and properties of an organism.
Genotype refers to the actual genetic constitution of an
organism. However, these basic definitions have a deeper
metaphorical significance. They point to the dichotomy
that exists between, on the one hand, the dynamics that
defines micro-level of a complex system, and, on the other
hand, the macroscopic behavioral properties of that system.
Knowing an organisms genotype (or, say, the underlying
lattice-rules for a cellular automaton), does not necessarily
tell you anything at all about an organisms phenotype (or
how the cellular automaton will actually behave).
Understanding the nature of the connection the genotype
level and phenotype-level remains one the deepest, most
profound issues in complex systems theory today.

Self-Organized Criticality. Self-organized criticality (SOC)
describes a large body of both phenomenological and
theoretical work having to do with a particular class of
time-scale invariant and spatial-scale invariant phenomena.
Fundamentally, SOC embodies the idea that dynamical
systems with many degrees of freedom naturally
self-organize into a critical state in which the same events
that brought that critical state into being can occur in all
sizes, with the sizes being distributed according to a
power-law. The kinds of structures SOC seeks to describe
the underlying mechanisms for look like equilibrium
systems near critical phase-transition points but are not
near equilibrium; instead, they continue interacting with
their environment, "tuning themselves" to a point at which
critical-like behavior appears.  Introduced in 1988, SOC is
arguably the only existing holistic mathematical theory of
self-organization in complex systems, describing the
behavior of many real systems in physics, biology and
economics. It is also a universal theory in that it predicts
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that the global properties of complex systems are
independent of the microscopic details of their structure,
and is therefore consistent with the "the whole is greater
than the sum of its parts" approach to complex systems. Put
in the simplest possible terms, SOC asserts that complexity
is criticality. That is to say, that SOC is nature's way of
driving everything towards a state of maximum complexity.

Basic Lessons

The major lesson of complex systems theory is that complex
behavior is usually an emergent self-organized phenomenon
built upon the aggregate behavior of very many nonlinearly
interacting "simple" components. It advocates, in essence, a
simplicity breeds complexity approach to the study of complex
systems. There are myriad examples of ostensibly
high-dimensional complex systems (that is, systems composed of
a very large number of degrees-of-freedom) such that when
"tuned" with an appropriate control parameter effectively behave
as though they are low-dimensional. Think of the convective rolls
of a fluid that is heated on the bottom and cooled at the top.
Though the liquid itself consists of millions of interacting
molecules, the motion of convective rolls -- which can be simple
and even chaotic -- is well described by a single "roll amplitude"
parameter.

Basic lessons of complex systems theory include:

Nonlinearity is Key. Without nonlinear interactions there
can be no deterministic chaos in simple systems and no
complex behavior in complex systems. Moreover, nonlinear
systems appear to be much more pervasive than linear
systems. By virtue of nonlinearity, the behavior of the
"whole" is not just a simple aggregate of the constituent
"parts."

Interconnectivity is Important. How the parts of a complex
system are interconnected is just as important as what those
parts are and what does parts do.

Parts have Meaning Only Within Context. The effect that
parts have on the remainder of the system -- literally, how
those parts are defined within the complex system -- is
determined by the context of the whole within which those

Appendix C

140



parts exist. In referring to any part P of a complex system,
one must also point to various other parts with which P
interacts (or may interact in the future).

"Process and Evolution" vice "Solution". Simple (i.e.
low-dimensional) dynamical systems are characterized by
simple attractors -- fixed points, limit cycles, quasiperiodic
and chaotic (or strange) attractors. Although one can also
try to characterize the behavior of complex systems with
these attractor "labels," such a description would entirely
miss the essence of what it means to be a complex system. A
complex system embodies process, a ceaseless search for a
better "solution" for an ill-defined, amorphous ever
receding "problem." There is no such thing as "the
solution," as the problem continually changes. In Zen-like
fashion, you can say that the harder one tries to pin-down
the behavior of a complex system with some static measure,
the further one is from understanding what the complex
system is really doing.

Adaptability. The essence of a complex adaptive system is
that its constituent parts are not Newtonian "billiards" that
react blindly (but in well-defined fashion) to the world
around them, but are instead endowed with an ability to
sense, learn from, and adapt to their environment as they and
the environment both evolve in time. An related lesson is
that individual solutions (or evolutionary timelines) are
essentially non-reproducible; a given system may "solve" a
given problem in many different ways.

Emergence. Perhaps the central concept of complex
systems theory is that high-level behaviors emerge naturally
out a brewing soup of low-level interactions. A flock of birds
(or "Boids," see part I [28], page 73) does not need a
central direction to behave in an apparently orchestrated  
manner. Nowhere on the lattice rule-level in Conway's Life
CA game (see  part I [28], page 87) is there any hint of the
particle-like glider that spontaneously emerges on a higher
level, and then apparently obey a dynamics all its own. The
lesson is that where there is an assemblage of very many
nonlinearly interacting parts, there is a good possibility of
emergent behaviors on higher levels than those defining
the underlying interactions. Moreover, such emergent
behavior can appear on multiple spatial and temporal
levels.
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Global Order Arises from Local Activity. Complex
high-level patterns are often due to relatively simple local
dynamics lying on a much lower level. The intricate swirls of
the cellular automaton model of the Belousov-Zhabotinski
reaction (see Part I [28], page 90), for example, have a
characteristic length scale that is on the order of twenty or
more individual lattice sites who local (i.e. one site wide)
dynamics is responsible for those patterns.

Global order Affects Local Dynamics. Not only does an
emergent high-level structure generally owe its existence to
low-level local dynamics, but the high-level patterns also
affects the local behavior. Think of a vortex in a turbulent
flow of liquid. On the one hand, the local interactions
among the individual molecules making up the fluid are
directly responsible for producing the vortex. On the other
hand, once the vortex is formed it dictates the flow of
molecules that surround it by letting in some and releasing
others into the surrounding liquid.
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Appendix D: Irreducible Semi-autonomous
Adaptive Combat Agents 

One obvious application of complex system theory to land
warfare on Tier-VII of the eight tiers of applications is to model
land combat as a co-evolving "ecology" of local-rule-based
semi-autonomous agents. In this appendix we present a brief
outline of the basic element of such a model, which we call an
Irreducible Semi-Autonomous Adaptive Combat Agent
(ISAACA).50 

An ISAACA represents a primitive combat unit (infantryman,
tank, transport vehicle, etc.), that is equipped with:

a default local rule set specifying how to act in a generic
environment; i.e. embedded “doctrine”

acts may consist of

simple situational assessment

communication of information (up/down echelon)

movement 

advance

retreat

obstacle avoidance

movement is both “individually motivated” -- i.e.
each ISAACA’s primary instinct is survival -- and
locally driven -- i.e. each ISAACA acts according
to what its nearby friends are doing)

One possible “template” for goal-directed
movement is to continually optimize the
trade-offs among (1) choosing the fastest route
from starting point to goal, (2) maintaining a
minimal lethality of surrounding enemy

50 Apart from its descriptive value, the acronym ISAACA was chosen to
pay tongue-in-cheek homage to Isaac Newton. It seemed an appropriate
choice to make given that the "new sciences" represents a fundamental shift
away from linear "Newtonian" thinking.
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ISAACAs, and (3) maintaining the maximal
distance to all approaching enemy ISAACAs.

combat

a goal (or goals) directing its behavior

an internal adaptive mechanism allowing it to alter its
default rule set that acts according to an internal map of its
environment

motivated by an internal value system (perhaps
patterned after Smith’s “Calculus of Ethics” [])

adaptation via GA: each ISAACA effectively “plays
out a scenario” using genetically-encoded set of
possible tactics; fitness is “expected payoff” modulo
an internal value system

a hierarchical rule set, consisting of orders passed down
echelon via the C2 topology

a global rule set that determines combat attrition and
reinforcement

What is the basic idea?

to abstract the universal patterns of behavior and/or
strategies/tactics that are essentially independent of the
details of the makeup of individual ISAACAs

to model land warfare by focusing on an ecology of
ISAACAs, the decision process, and its role in the C2

hierarchy:

the premise is that an ISAACA’s internal processing
and its ability to react and adapt to continually
changing external stimuli is as important a dynamical
driver as is the set of “firepower statistics” typically used
in calculating force-on-force attrition

ISAACAs are semi-autonomous agents making local
decisions predicated on rule-based doctrine
codification -- agent options are constructs of an agent’s
local perception (or mental map) of goal-vs-lethality
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trade-off and are (simultaneously) constrained by
global commands issued by higher echelon

to embody objective and doctrine within each ISAACA, and
endow each ISAACA with a sufficient “decisional flexibility/
robustness” to continually adapt its default rule sets as
(perceived) situation warrants

to observe what global combat patterns emerge from the
local agent- and rule- based skeletal substrate

to augment a conventional CA approach in three ways:

embed an intrinsic adaptability

not just an evolution according to a fixed set of
rules, but an evolution of the rules themselves (via
rule templates) 

allow for non-local information (via an embedded C2

topology) and command hierarchy

allow for GA-derived pseudo-global strategies 

what sequence of local strategies yields “optimal”
results modulo prescribed goal? -- orders pumped
down echelon are based on “evolved” tactics played
out on possibly imprecise mental maps of
local/global commanders

Actions, Goals, Properties, and States

Given an ISAACA, say A:

what are the variables defining A’s current state?

self-identity (“Red”, “Blue”)

rank (infantry, captain, colonel, general)

weapon store

maximum firepower

minimum firepower
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maximum range

offensive capability: how good is A at hitting and killing
an enemy unit that it fires at

aim accuracy

probability of hit

probability of kill (depends on enemy unit aimed
at)

defensive capability : how good is A at avoiding being
hit and killed by an enemy unit

maneuverability

terrain camouflage

armor (enemy firepower required for given
fractional change in overall “health”)

vulnerability to each kind of weapon

movement

maximum range/time-step

direction

speed

terrain-dependence

adaptive rule-set

internal rules determine all of A’s actions at time t,
but also evolve in time according to changes in A’s
environment

morale 

increases with (perception of) local combat
“successes”)

decreases with increasing damage

morale may be used to define ISAACA “profiles,”
describing different “personalities”

combat “quality”
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higher quality assures higher attack “success” rate
(i.e. firepower and maneuverability distributions
weighted more towards higher end, say with a
tail-end-weighted beta-distribution); in short, higher
quality units “perform better”

increases with A’s experience

higher quality assures lesser degradation of morale
under adverse conditions

health

defines A’s overall health and functionality; when
health = 0, A is “dead”

what does A know about its environment? (what is A’s
mental-map?)

terrain (i.e. lattice-cells) within visual line-of-site (LOS)

identity of ISAACAs within visual LOS

what can A do?

sense environment: A has an associated LOS-radius RLOS

that defines an area within which it can sense terrain
and other ISAACAs

communicate: with ISAACAs of next-higher rank

move: Acan move anywhere within an associated
movement-radius Rmove, provided that it is not impeded
by any intervening terrain and/or other constraints;
where A moves is determined by A’s adaptive rule-set

engage and be engaged in combat

formulate local strategy

with whom does A communicate?

communicates directly only with those ISAACAs that
are next-higher in rank

A transmits its location and mental map
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A receives orders (overriding default and/or locally
formulated tactics)

what are A ‘s objectives?

survival (perhaps defined by a “maximal enemy
firepower” threshold that enables a local-rule override --
“retreat!” -- over any default or higher-echelon orders)

achieve globally prescribed “victory” conditions 

capture a prescribed area

destroy enemy “headquarters”

protect friendly “headquarters”

maintain prescribed set of friendly “structures”

maintain prescribed fraction of friendly forces

kill a prescribed number of enemy ISAACAs or kill
prescribed fraction of enemy forces

what are A’s actions and strategies predicated on? (how are
A’s objectives defined?)

how does A adapt to its environment?

each A chooses a strategy by effectively playing out a
series of internalized “games” predicated on an internal
map of the combat “playing field”

A uses the strategy with the highest perceived “payoff”
(which must also be consistent with any pertinent
higher-echelon orders) 

“strategy” involves both movement and combat

how does A distinguish between friendly and enemy forces?

relative positioning?

what are the different kinds of engagements?

direct A <---> A’ combat: A “sees” A’, and vice-versa, and
both engage in one-on-one combat; outcome is
determined probabilistically, taking into account
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“weapon strength,” range, range, morale, defender’s
strength and visibility

A <---> Area(A’): A “knows” or “suspects” A’ is located
within an area Area(A’) -- consisting of, say, an N-by-N
array of lattice cells -- and “blindly” fires at a random
cell or cells in Area(A’)

collective Fire, F(R,A): A coordinates its fire into a patch
of enemy territory -- an area of size A and at range R
--with nearby As

how are many-vs-many -- i.e. NR “Red” As simultaneously
come within LOS of NB “Blue” As -- conflicts resolved?

independent fire -- when all ISAACAs act independently
(i.e. when units from one side can see all units of the
other side but none from their own):

mixed fire -- when one side acts independently and the
other collectively (i.e. when each unit on one side can
see all opposing units but none from its own, and units
from the opposing side can see both sides):

collective fire -- when all ISAACAs act collectively (i.e.
when units on both sides are aware of all other units):

what is A’s role in the C2 hierarchy?

what combat doctrine can be captured by local rules?

what orders can passed down echelon to A?

reconnaissance

what are the different kinds of terrain?

flat/rough

road

forest

hill
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river

minefields

structures (bridges, storage, bunkers, etc.)

how is terrain characterized?

altitude (affecting LOS)

movement (“passability”) index

function of type of ISAACA occupying cell

camouflage (“fog”) index (affects visibility and/or
identifiability)

visibility: ISAACAs positioned in a forest cell C are
visible only to ISAACAs immediately adjacent to C

defensive capability: fractional increase of
defensive-capability allotted to all ISAACAs within
cell of given terrain-type

how does A interact with different kinds of terrain?

Decision Dynamics

Each ISAACA:

thinks for itself

acts according to default “rules” in order to bring it
closer to achieving its general goal

follows local group action

engages/is-engaged-by enemy fire

obeys (non-local) orders issued from higher echelon

follows orders from local commander (on time scale )

obeys global commander via its local commander (on
time scale )

Appendix E

151



each ISAACA “sees” only what is within its
LOS-radius

each ISAACA generates (via an embedded GA
algorithm) a set of local movement and fire
strategies

each local commander (LC-ISAACA) is aware of each
of the local environments as seen by the ISAACAs
under its command (in addition to seeing what is
within its own LOS-radius)

each LC-ISAACA generates a set of movement and
fire-conflict strategies for each of the ISAACAs in its
command

each global commander (GC-ISAACA) has a (possibly
inaccurate) picture of the overall combat environment,
and is an aggregate of environmental perceptions of
the local commanders under its command 

each GC-ISAACA generates a set of movement and
conflict strategies for each of the LC-ISAACAs in its
command

Measures of Combat effectiveness

local

sustainability

rate of advance

global

total relative attrition (enemy to friendly casualties)

attrition rate inflicted on enemy

time to reach goal
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Appendix E: A Brief Discussion of the
General Applicability of Genetic Algorithms

Even a brief glance at the list of possible applications of complex
systems theory to land warfare (see, for example, table 3), shows
that genetic algorithms figure prominently on many of the eight
tiers of applicability.  The fact that is so testifies to the enormous
popularity as a basic research tool of this computational
technique in complex systems theory. Indeed, there are few
artificial-life computer models that do not include at least some
form of the basic genetic algorithm.

But, given that there are many flavors of genetic algorithms, how
does one know, a-priori, if a particular realization of a genetic
algorithm is the best one to use? How do we that other methods
to solve combinatorial optimization problems -- such as gradient
descent and simulated annealing -- do not perform better than
genetic algorithms for a given instance of a problem? These
questions are actually difficult, if not impossible, to answer, and a
one has to be very careful in applying genetic algorithms. In this
appendix we briefly discuss the general applicability of genetic
algorithms, and suggest that the algorithm should not be
considered a panacea solution to any problem.

Genetic algorithms are, in fact, extremely powerful heuristic
tools for finding near-optimal solutions for general
combinatorial optimization search problems. They have been
successfully applied to a wide-variety of problems, and not just
those confined to complex systems theoretic studies. Problems
they have been used for include traveling salesman problems,
VLSI circuit layout, gas pipeline control, the parametric design of
aircraft, neural net architecture, models of international security,
strategy formulation, and so on. 

Recall (see Part I [28], pages 93-101) that genetic algorithms
consist essentially of five basic steps:

Step 1: begin with a randomly generated population of
chromosome-encoded templates of solutions to a given
problem
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Step 2: calculate the fitness of each chromosome, where
fitness is a measure of how well a member of the population
performs at solving the problem

Step 3: retain only the fittest members and discard the least
fit members

Step 4: generate a new population of chromosomes from the
remaining members of the old population by applying
operations  such as reproduction, crossover, and mutation

Step 5: calculate the fitness of these new members of the
population, retain the fittest, discard the least fit, and
re-iterate the process

The two key words in the above list are "templates" and "fitness."
Genetic algorithms are generally applicable whenever one is
faced with a problem whose "solution" is known to reside (or
suspected of residing) somewhere within a possibly vast
N-dimensional "solution-space," but its exact location in that
space is unknown. However, because a genetic algorithm
generally needs a fitness function -- that is,  a measure of how
close a candidate solution is to the desired solution - to conduct
its search of the solution space, great care must be put into
defining the fitness measure. 

If the fitness is either poorly defined, or, worse, leaves out the
relevant parameters of the problem altogether, the genetic
algorithm will effectively begin its search in a "brain-dead" state,
and will likely fail in its attempt. While open-ended genetic
algorithms, that start out having no fitness function, are often used
in artificial-life studies of the evolution of natural ecologies, the
reader is reminded that natural ecologies differ fundamentally
from a natural "combat ecology." While natural ecologies tend to
evolve their own (changing) fitness functions over time, a combat
environment usually comes pre-defined, with a litany of
constraints and measures. While that is not to say that combat
ecologies do not also generate their own fitness measures in the
course of their evolution, it is still true that any reasonable model
of such ecologies would be remiss if it did not respect the
pertinent control parameters defining them. Therefore, for
typical combat-related problems, one must think carefully about
what fitness measure is relevant for what parameters before a
genetic algorithm is used to explore the resulting solution space.
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A genetic algorithm is only as good as the fitness measure it uses to explore
its "solution space" with.

Keep in mind also that a genetic algorithm has a chance to come
close to the desired "solution" only if (1) the template of the
general solution has been defined accurately, so that it is known
to reside somewhere in the overall solution space, (2) the fitness
of a solution template has been defined correctly, so that the
genetic algorithm knows, at all times, how close it is getting to
the desired solution, and (3) the problem is, in principle,
amenable to a genetic algorithm search. It is often impossible to
satisfy all three conditions. Moreover, it is currently unknown
how to decide, a-priori, how hard a particular fitness landscape
will be for a genetic algorithm to search it for a solution. Some
landscapes are more amenable than others for a genetic
algorithm search. Of course, the even more general problem of
determining what landscape is best suited for what general
search technique remains unsolved.

The point here is that extreme caution is urged when applying
genetic algorithms. One should not casually label a land warfare
problem, that has been "solved" by using a genetic algorithm, a
successful example of applying complex systems theory to land
warfare solely on the basis of having used a genetic algorithm.
Applying complex systems theory means thinking carefully about
all of the different facets of what makes  given system a "complex
systems," and applying that knowledge intelligently and
consistently to trying to understand what that system is really
doing. A properly coded genetic algorithm that uses a poorly
thought-out fitness measure for an even more poorly thought-out
description of combat dynamics, is not just bad complex systems
theory, it is bad science.
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